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An Application of a New Multivariate  
Resampling Method to Multiple Regression 

     Haiyan Bai              Wei Pan 
    University of Central Florida            University of Cincinnati 
This study presents a new multivariate resampling method to improve the performance of multiple 
regression with small samples. The kernel resamping technique (KRT) is utilized in the multivariate 
resampling procedure to draw random resamples with random noises, which facilitates obtaining more 
accurate parameter estimates and their standard errors in multiple regression. The findings from an 
empirical example suggest that the statistical performance of multiple regression is improved through the 
KRT technique. 

ultiple regression is one of the popular statistical methods; however, when it is applied to small 
samples, it encounters problems related to the accuracy of statistical estimation (Allison, 1999). 
Resampling method has been implemented to solve the small sample problems (Bai & Pan, 
2008; Davison & Hinkley, 1997; Efron & Tibshirani, 1998). The bootstrap as the most popular 

resampling method has been applied in regression analysis since Efron’s pioneer work in 1979. The 
bootstrap is an effective tool to solve the small sample problems, and comprehensive applications of the 
bootstrap to regression models have also been developed by researchers (e.g., Bickel & Freedman, 1981, 
1983; Freedman, 1981; Peters & Freedman, 1984; Shao, 1988; Weber, 1984; Wu, 1986); however, the 
bootstrap standard errors tend to be biased downward in regression analysis when applying to a small 
sample (Peters & Freedman, 1984). Therefore, managing small sample problems in regression still 
remains a pertinent issue. A study on improving the statistical performance of multiple regression with 
small samples would significantly contribute to the literature in both methodological research of small 
sample issues and applied research using multiple regression with small samples. 
  The purpose of this present study is to introduce a new multivariate resampling method, the kernel 
resampling technique (KRT), to tackle the problems in multiple regression with small samples. 
Specifically, the present study (a) introduces the procedure of KRT, (b) examines the performance of 
KRT in multiple regression through an empirical example, and (c) compares the performance of KRT in 
multiple regression with that of the bootstrap in terms of estimation bias and standard errors. 
 

Kernel Resampling Technique 
  Kernel Resampling Technique (KRT) is a new resampling method which uses kernel smoothing 
technique to capture the shape of the empirical sample distributions and sampling from the neighborhoods 
of the original sample. The kernel technique uses kernel probability density estimation to map the original 
linear or non-linear observations into a higher-dimensional space, where the linear classifier is 
subsequently used to solve problems (Aizerman, Braverman, & Rozonoer, 1964). The kernel probability 
density estimation has gained popularity, especially for dealing with nonparametric issues (Towers, 
2002).  
  The kernel technique has been used in the bootstrap for smoothing the bootstrap distribution (Efron & 
Tibshirini, 1998; Silverman & Young, 1987). However, it is worth noting that there are two key points 
when using the kernel technique in the smooth bootstrap: (1) kernels are used after the bootstrap 
resampling to smooth the bootstrap distribution, and (2) the bandwidths of the kernels are not specifically 
defined for different data in the smooth bootstrap. With regards to the second point, finding an optimal 
bandwidth for the bootstrap smoothing procedure is a statistically and technically challenging task for 
many researchers and statisticians (Silverman & Young, 1987). 
  Regarding the issues of the basic and smooth bootstrap, this present study presents a new multivariate 
kernel resampling technique for improving the performance of multiple regression with small samples 
because kernel technique has been proved remarkably successful for standard classification and 
regression problems (Schölkopf & Smola, 2002). KRT is a new resampling method where the overall 
procedure seems similar to that of the bootstrap, but KRT, by design, radically differs from the bootstrap 
in three-fold: (a) The bootstrap samples are randomly drawn from the exact original small sample data 
with replacement in the basic bootstrap, whereas the KRT samples are each randomly drawn from a 
neighborhood of a data point in the original small sample; (b) The kernel technique is used to select 
resamples with random noises instead of being used to smooth the resampling distributions as does the 
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smooth bootstrap; and (c) KRT has a fixed bandwidth for the kernel used in the resampling procedures 
whereas the smooth bootstrap does not.  
  KRT utilizes Gaussian kernels (Silverman, 1986; Simonoff, 1996), the most commonly-used kernel 
technique (Yip, Ahmad, & Pong, 1999), to capture the underlying distribution of the given multivariate 
small sample data. The Gaussian kernel bandwidth is determined to produce an asymptotically optimal 
bandwidth minimizing the mean integrated square error (MISE; Silverman, 1986).  
Specifically, let X1, …, Xn be the given multivariate small sample data or n vectors from a d-dimensional 
space Rd, where d is the number of variables and n is the sample size. The KRT procedure is as follows: 
 

Step 1. Define n multivariate Gaussian kernels as Ki(x) ~ Nd(Xi, H0
2), i = 1, …, n, where the mean 

vector Xi is the ith multivariate observation in the multivariate small sample and the random 
noise H0 can be determined by the optimal bandwidth MISE (Silverman, 1986, p. 87; 
Simonoff, 1996, p. 105): 
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where Σ is the population covariance matrix and it can be estimated by S, a sample covariance 
matrix of X1, …, Xn. 

Step 2. Draw n multivariate random observations, X*1, …, X*n, each from one multivariate 
Gaussian kernel Ki(x) (i = 1, …, n). The n multivariate random observations are defined as a 
multivariate KRT sample.  According to Silverman (1986, eq. 4.7, p. 78) and Simonoff (1996, 
eq. 4.5, p. 102), the multivariate KRT sample has an estimated multivariate density function as 
follows: 
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where kd(u) ~ Nd(0, I) and has the following distributional relationship with the multivariate 
Gaussian kernel Ki(x), i = 1, …, n: 
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Step 3. Conduct multiple regression over the multivariate KRT sample, X*1, …, X*n, to obtain an 

estimate of a parameter of interest.  
Step 4. Repeat Steps 2 to 3 k times, where k is called the KRT resampling parameter, to obtain k 

parameter estimates that comprise a sampling distribution of the parameter of interest. 
Step 5. Evaluate the performance of KRT in regression analysis based on the sampling distribution 

such as estimation bias and standard errors. 
  
  The above procedure has been written into a SAS macro program and is available through the author. 
The “plug-in principle” (Efron & Tibshirani, 1998, p.35) makes the application of KRT very simple and 
straightforward because the above procedure does not require researchers to modify the bandwidth of the 
kernel to obtain KRT samples. Therefore, KRT is methodologically comparable to the bootstrap but the 
application of KRT is simpler than that of the bootstrap. 
  In the next section, an empirical example is presented for illustrating the application of the KRT 
procedure to multiple regression and evaluating the statistical performance of KRT in multiple regression 
with a small sample.  
 

An Empirical Study of KRT in Multiple Regression Analysis 
The Cement Hardening Data and Regression Model 
  The famous small sample of the Cement Hardening Data (CH) (Hjorth, 1994, p. 31) was used to 
study the performance of the application of the KRT procedure in multiple regression while comparing  
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Table 1. The Cement Hardening Data 
x1 x2 x3 x4 y
7 26 6 60 78.5 
1 29 15 52 74.3 

11 56 8 20 104.3 
11 31 8 47 87.6 

7 52 6 33 95.9 
11 55 9 22 109.2 

3 71 17 6 102.7 
1 31 22 44 72.5 
2 54 18 22 93.1 

21 47 4 26 115.9 
1 40 23 34 83.8 

11 66 9 12 113.3 
10 68 8 12 109.4 

Note. x1 = amount of tricalcium aluminate, 3CaOAL2O3; x2 = amount of tricalcium silicate, 3CaOSiO2;  x3 
= amount of calcium aluminum ferrate, 4CaOAl2O3Fe2O3; x1 = amount of dicalcium silicate, 2CaOSiO2; y 
(response) = heat evolved in calories per gram of cement. 
 
 The CH data (Table 1) with 13 observations depict the hardening of the cement and the heat evolved 
during the first 180 days after addition of water.  x1, x2, x3, and x4 were linearly dependent predictors of 
the amounts of different components of chemicals, and the response variable y was the heat produced. 
Because Hjorth’s (1994) linear regression model (4) was proven to have a good fit with inclusion of all 
the four predictors presented, it was used for both the KRT samples and the bootstrapping observations. 
 

       iiiiii xxxxy εβββββ +++++= 443322110 , i = 1, 2, ..., n.    (4)  
 

Comparisons of Estimation Accuracy for the Empirical data 
  Table 2 shows the ordinary least-squares (OLS) estimates ( 0β̂ , 1̂β , 2β̂ , 3β̂ , 4β̂ ) from the original 
small sample, the estimates from 200 KRT samples and 200 bootstrap samples and their estimated 
standard errors se ( iβ̂ ), i = 1, …, 4, from the regression model (4).  
 From Table 2 we can see that the estimates from KRT were systematically closer to the estimates 
from OLS than the estimates from the bootstrap; and the standard errors estimated from KRT were also 
systematically smaller than those from both the bootstrap and OLS. In addition, it is clear that the 
approximate biases of the KRT estimates were systematically smaller than the biases of the bootstrap 
estimates.  
  Table 3 shows the model fit indices from all the methods. We can see from Table 3 that the root mean 
squared error (RMSE) estimate from the KRT procedure was also close to the estimate from the OLS 
method, but the RMSE estimate from the bootstrap was still downward biased for the analysis on the 
empirical data. The multiple correlation R2 from the KRT procedure is also comparable to that from both 
the bootstrap and OLS method (see Table 3).  
 

Results and Discussions 
  The present study presents the new multivariate resampling method, KRT, for obtaining more 
accurate estimates with reasonable standard errors in multiple regression analysis with small samples. 
Unlike the smooth bootstrap, which draws resamples from the smoothed distribution of the bootstrap data, 
KRT draws the resamples from the neighborhoods of the original data with a fixed but optimal 
bandwidth. As such, of KRT has the following advantages: (a) the resample distribution strictly follows 
the original sample distribution, (b) the sampling distribution is not artificially modified, and (c) there is 
no need for researchers to consider the kernel bandwidth. 
  The findings from the applications of KRT in multiple regression to the empirical data suggest that 
the KRT procedure outperformed other methods in terms of the accuracy of the estimation of regression 
coefficients, estimation bias, and standard errors, comparing with the OLS method on the original small  
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Table 2. Estimates of Regression Analysis on the Cement Hardening Data 

Note. Est. = Estimate. Approx = Approximate. 
 
Table 3. Model Fit Summary for the Cement Hardening Data 

Note. Est. = Estimate. Approx = Approximate. 
 
sample and the bootstrap results. The results from this study also support the use of KRT as a viable 
alternative to improving the performance of multiple regression analysis with small samples. This current 
study suggests that KRT can be a useful tool for researchers to conduct multiple regression analysis when 
only small samples are available. It will help researchers draw more valid statistical inference than using 
the original small sample.  
  The advantage of KRT concerns the resampling procedure’s simplicity and efficiency. Compared to 
the bootstrap, KRT obtains comparable or more accurate estimates, but does not require researchers to 
modify the complicated resampling procedures. The results from this study indicated that the KRT 
procedure has overcome the two major limitations that the bootstrap method encountered. First, KRT 
obtains independent resamples through sampling from the neighborhoods of the data points, which solves 
the lack of independent observations of the basic bootstrap resamples. Secondly, the KRT procedure 
practically advances the smooth bootstrap by using fixed optimal bandwidth for the kernel procedure 
instead of requiring researchers to customize the optimal bandwidth to their data. The simplicity of KRT 
will help improve the practical applications of resampling method in the real research and promote the use 
of resampling method in the computer age.   
  In the present study, we only explored the statistical performance of the application of the KRT 
procedure to the multiple regression in terms of the estimation of regression coefficients and model fit 
indices. Even though we have used the population parameters to verify the smaller biases for the 
estimations from the KRT procedure for the both estimates and standard errors, significance tests and the 
confidence intervals are desirable for further research.   
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Interaction Effects: Centering, Variance  
Inflation Factor, and Interpretation Issues 

    Cecil Robinson           Randall E. Schumacker 
University of Alabama 

Research hypotheses that include interaction effects should be of more interest to educational researchers, 
especially since issues related to centering and interpretation of the variance inflation factor have been 
introduced. The purpose of this paper was to examine interaction effects in the context of centered versus 
uncentered variables and the variance inflation factor, especially upon the interpretation of interaction 
effects.  Results indicated that centering of variables was required when examining interaction effects, 
uncentered variables impacted the variance inflation factor values, and separate regression equations have 
important interpretation outcomes in the presence of non-significant interaction effects. 

istorically, hypotheses that specify testing interaction effects before examining main effects have 
appeared under the framework of analysis of variance. In the 1960’s with the emergence of 
multiple regression, coding for interaction effects was introduced. Faculty who taught multiple 
regression therefore usually included instruction on dummy coding to obtain a test of interaction 

effects (Fox, 1997).  Today, depending upon the textbook used, analysis of variance with A x B 
interaction effect may be covered without any corresponding interaction effect presentation given for 
multiple regression (Hinkle, Wiersma, & Jurs, 1998).   
 Much of the published research literature seems to only examine main effects or linear effects.  In 
practice, A x B interactions are only found in a few published journal articles, A x B x C interactions, are 
less common, and A x B x C x D interactions are even more scarce. Only a few 5-way interactions have 
ever been published.  The reason is that such higher level interaction effects are extremely difficult to 
interpret. Interaction effects that are categorical in nature, involve multiplicative continuous variables, or 
hypothesize quadratic or cubic terms are rare (Schumacker & Marcoulides, 1998).     
 Research hypotheses that include interaction effects should be of more interest to educational 
researchers, especially since issues related to centering (Aiken & West, 1991) and interpretation of the 
variance inflation factor (Freund, Littell, and Creighton, 2003) have been introduced. The purpose of this 
paper is to examine interaction effects in the context of centered versus uncentered variables and the 
variance inflation factor, especially upon the interpretation of interaction results.  
 

Theoretical Framework 
  The effects of predictor scaling on coefficients of regression equations (centered versus uncentered 
solutions and higher order interaction effects (3-way interactions; categorical by continuous effects) has 
thoughtfully been covered by Aiken and West (1991). Their example illustrates that considerable 
multicollinearity is introduced into a regression equation with an interaction term when the variables are 
not centered.  The variance inflation factor should detect the degree of multicollinearity when variables 
are uncentered (Freund, Little, & Creighton, 2003). The variance inflation factor as a measure of the 
degree of multicollinearity however has not been examined in context with centered versus uncentered 
variables in a regression equation containing interaction effects.   
 
Centering  
 Centering is defined as subtracting the mean (a constant) from each score, X, yielding a centered 
score. Aiken & West (1991) demonstrated that using other transformations, additive constant, or 
uncentered scores can have a profound effect on interaction results. Regression with higher order terms 
has covariance between interaction terms (XZ) and each component (X and Z) depends in part upon the 
means of the individual predictors. Rescaling, changes the means, thus changes the predictor covariance, 
yielding different regression weights for the predictors in the higher order function.  Centering is 
therefore an important step when testing interaction effects in multiple regression to obtain a meaningful 
interpretation of results. 
 Centering the variables places the intercept at the means of all the variables. A regression equation 
with an intercept is often misunderstood in the context of multicollinearity.  The intercept is an estimate 
of the response at the origin where all independent variables are zero, thus inclusion of the intercept in the 
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study of collinearity is not of much interest.   When variables have been centered, the intercept has no 
effect on the collinearity of the other variables (Belsley, Kuh, and Welsch, 1980).   
 Centering is also consistent with the computation of the variance inflation factor (VIF) and therefore 
it is suggested that VIF be computed only after first centering variables (Freund, Littell, and Creighton, 
2003). Centered variables have low intercorrelation, while uncentered variables have higher 
intercorrelation, thus higher collinearity. The variance inflation factor is therefore an important part of 
examining interaction effects in multiple regression.  
 
Variance Inflation Factor 
 When a full regression model is specified, multicollinearity amongst the predictor variables is 
possible. Multicollinearity can inflate the variance amongst the variables in the model. These inflated 
variances are problematic in regression because some variables add very little or even no new and 
independent information to the model (Belsley, Kuh & Welsch, 1980). Although Schroeder, Sjoquist and 
Stephen (1986) assert that there is no statistical test that can determine whether or not multicollinearity is 
a problem, there are ways for detecting multicollinearity (Berry & Feldman, 1985). For example, the 
variance inflation factor (VIF) can detect the degree of multicollinearity when variables are uncentered  
(Freund, Littell & Creighton, 2003). Stine (1985) also suggested a graphical approach to detecting VIF. 
 VIF measures the impact of multicollinearity among the X's in a regression model on the 
precision of estimation.  It expresses the degree to which multicollinearity amongst 
the predictors degrades the precision of an estimate.   VIF is a statistic used to measure possible 
multicollinearity amongst the predictor or explanatory variables.  VIF is computed as (1/(1-R2)) for each 
of the k – 1 independent variable equations.  For example, given 4 independent predictor variables, the 
independent regression equations are formed by using each k-1 independent variable as the dependent 
variable:  

X1 = X2 X3 X4 
X2 = X1 X3 X4 
X3 = X1 X2 X4 

 

Each independent variable model will return an R2 value and VIF value.  The term to exclude in the 
model is then based on the value of VIF.    If Xj is highly correlated with the remaining predictors, its 
variance inflation factor will be very large. A general rule is that the VIF should not exceed 10 (Belsley, 
Kuh, & Welsch, 1980).  When Xj is orthogonal to the remaining predictors, its variance inflation factor 
will be 1. 
 

Method and Procedures 
  The rationale for the data analysis was that three concepts: self-efficacy (Bandura 1997), hope 
(Snyder, 1995) and optimism (Scheier & Carver, 1992); comprise a cognitive set that form a belief system 
which influenced academic achievement.  We hypothesized an interaction effect between ethnicity and 
each predictor variable: self-efficacy, hope, and optimism in predicting academic achievement. The self-
efficacy, hope, and optimism variables were centered and uncentered for comparison purposes.  In 
addition, the variance inflation factor was calculated to determine the degree of multicollinearity present 
in the data results.  
 

Participants  
High school students (N = 209) from an ethnically diverse, working-class public high school in the 
southeast United States participated in this study.   The ethnic breakdown of the participants was 105 
African-American and 104 Caucasian American.  
 

Materials 
Students reported their gender, ethnicity, age, year in school, academic achievement (1 = mostly A’s to 6 
= half C’s or lower), and educational goals (1 = not important to 8 = very important).  The academic 
hope, academic self-efficacy, and optimism variables represented a cognitive set of competence measures 
in predicting academic achievement among this diverse high school population.   
  The Academic Hope Scale (AHS) measured academic hope components and is a sub-scale from the 
Domain Specific Hope Scale-Revised which measures hope in life areas including social relationships, 
family life, physical health, psychological health, work, romantic relationships, leisure activities, and 
religions/spiritual life  with moderately high score reliability of .89 and above (Campbell & Kwon, 2001).    
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  The Academic Self-Efficacy Scale (ASES) measured student beliefs about how they react to different 
academic tasks to succeed in academic achievement. The ASES is an excerpt from Bandura’s 
Multidimensional Self-Efficacy Scale  and has moderately high score reliability ranging from .69 to .85 
(Zimmerman, Bandura,  & Martinez-Pons, 1992).  
  The Life Orientation Test (LOT) measured dispositional optimism, or one’s expectancies that he or 
she will experience positive outcomes with score reliability of .76 (Scheier & Carver, 1985).  
 

Results 
  A multiple regression analysis was conducted using SPSS 16.0 with centered and uncentered 
variables.  The interaction effects along with the variance inflation factors are reported separately.   
  Hypothesis 1: Is there a statistically significant interaction between academic hope and ethnicity in 
predicting academic achievement?   
  Hypothesis 2: Is there a statistically significant interaction between academic self efficacy and 
ethnicity in predicting academic achievement?   
  Hypothesis 3: Is there a statistically significant interaction between optimism and ethnicity in 
predicting academic achievement?   
 The results of all three hypotheses clearly indicated the importance of centering variables when 
including an interaction term, as noted by Aiken and West (1991).  More importantly, the variance 
inflation factor was also affected if variables were not centered; thus falsely indicating multicollinearity.   
 

Interpretation of Interaction Effects 
  Interpretation of results would be erroneous for interaction effects with uncentered variables. 
Centering reduces VIF to acceptable levels with academic hope interaction significant, but academic self-
efficacy and optimism interaction not significant. We provide separate regression results for each ethnic 
group for interpretation of the interaction effects using centered variables. To compute the separate 
regression models, academic hope, self-efficacy and optimism scores were centered on the means for each 
of the ethnic groups. To compare and interpret the results of the separate regression models, an F-value 
was computed to test for differences between the separate regression models, and a t-value was computed 
to test for differences between the separate regression coefficients (Kleinbaum & Kupper, 1978).  
  The results in Table 4 demonstrate that separate regression models provide clarity of interpretation 
that single regression models with interaction term may not provide. First, although the results of 
Academic Hope confirm the interaction effect between ethnicity and Academic Hope (Table 1), the 
separate regression models highlight a magnitude of the interaction effect not present in the single 
regression model. Namely, Academic Hope explains nine times more variance in the Caucasian American 
student population than the African-American student population. Second, the difference in variance 
between ethnic groups is not examined in the single model with the interaction term, and as such may 
introduce Type II error. Although the interaction terms were not significant for Academic Self-Efficacy 
(Table 2) or Optimism (Table 3) in the single regression models, testing for differences in the amount of 
variance accounted for by each of the separate regression models reveals significant differences between 
Caucasian American and African-American students. Therefore, significant differences existed for 
academic self-efficacy and optimism not captured by the interaction effect in the single regression 
equation. 
 

Summary and Conclusion 
  Historically, interaction effects and main effects were conducted using analysis of variance.  In this 
context, a summary table reported the F values with a significant interaction effect being plotted to 
visually display an ordinal or disordinal interaction amongst the cell means.  Multiple regression can also 
analyze various types of interaction effects, but how interaction effects are computed is important.  We 
strongly recommend that variables be centered and the variance inflation factor reported otherwise 
erroneous results could occur and be misinterpreted.   
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Table 1. Uncentered and Centered Regression Models of  
Academic Hope and Ethnicity Predicting Grade Point Average 
     B   SE B     Β    t    p    VIF 
Uncentered Regression Model     
 Intercept 0.804 0.351  2.291 0.023  
 Ethnicity 1.266 0.582 0.844 2.175 0.031 37.064
 Academic Hope Scale (AHS) 0.057 0.009 0.507 6.168 0.000 1.668
 Ethnicity x AHS -0.036 0.015 -0.978 -2.453 0.015 39.198
Centered Regression Model     
 Intercept 2.988 0.068  43.633 0.000  
 Ethnicity -0.134 0.097 -0.089 -1.379 0.170 1.027
 Academic Hope Scale (AHS) 0.057 0.009 0.507 6.168 0.000 1.668
 Ethnicity x AHS -0.036 0.015 -0.201 -2.453 0.015 1.653
Note: R2 = 0.168; F (3, 205) = 13.802, p = 0.000 for both uncentered and centered regression models 

Table 2. Uncentered and Centered Regression Models of Academic Self-Efficacy and Ethnicity 
Predicting Grade Point Average 
 B SE B β t p VIF 
Uncentered Regression Model     
 Intercept 1.135 0.368  3.083 0.002  
 Ethnicity 0.672 0.558 0.447 1.204 0.230 32.654
 Academic Self Efficacy (ASE) 0.031 0.006 0.436 4.956 0.000 1.831
 Ethnicity x ASE -0.013 0.009 -0.535 -1.403 0.162 34.380
Centered Regression Model     
 Intercept 2.957 0.069  42.590 0.000  
 Ethnicity -0.098 0.098 -0.065 -0.998 0.320 1.008
 Academic Self Efficacy (ASE) 0.031 0.006 0.436 4.956 0.000 1.831
 Ethnicity x ASE -0.013 0.009 -0.123 -1.403 0.162 1.825
Note: R2 = 0.133; F (3, 205) = 10.51, p =0 .000 for both uncentered and centered regression models 

Table 3. Uncentered and Centered Regression Models of Optimism and Ethnicity Predicting Grade Point 
Average 
 B SE B β t p VIF 
Uncentered Regression Model     
 Intercept 1.758 0.383  4.591 0.000  
 Ethnicity 0.223 0.538 0.149 0.415 0.679 28.346
 Optimism (Opt) 0.044 0.014 0.300 3.108 0.002 2.061
 Ethnicity x Opt -0.011 0.020 -0.201 -0.547 0.585 29.795
Centered Regression Model     
 Intercept 2.936 0.072  40.972 0.000  
 Ethnicity -0.066 0.101 -0.044 -0.654 0.514 1.001
 Optimism (Opt) 0.044 0.014 0.300 3.108 0.002 2.061
 Ethnicity x Opt -0.011 0.020 -0.053 -0.547 0.585 2.059
Note: R2 = 0.071; F (3, 205) = 5.247, p = 0.002 for both uncentered and centered regression models 

 
 Although multiple regression can analyze interaction effects, our results demonstrate that interaction 
terms not significant in regression models can produce significantly different regression models when 
computed separately. Therefore, we also suggest that separate regression equations be computed for each 
level of the interaction variable to provide a more robust interpretation of the interaction effect.  This is a 
different research question than testing for an interaction effect, but traditional research methods dictate 
that non-significant interaction does not warrant further exploration, however, our results suggest 
otherwise. 
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Table 4. Summary of Separate Regression Analyses Predicting Grade Point Average 
 African-American (n = 105)  Caucasian American (n = 104) 

 b SE b β t p  b SE b β t p 

Academic Hope    
 Intercept 2.855 0.069 41.557 0.000 2.988 0.068 43.725 0.000
 Academic Hope Scale 0.020 0.012 0.170 1.750 0.083 0.057 0.009 0.522 6.181 0.000
Note: R2 = 0.029; F(1,103) = 3.1, p = 0.08 for African-American students;  
 R2 = 0.272; F(1,102) = 38.2, p =0.0001 for Caucasian American students; 
 Comparison of regression models, F (1, 207) = 68.57, p < 0.001;  
 Comparison of regression coefficients, t = 3.7, p < 0.001       
       
Academic Self-Efficacy   
 Intercept 2.859 0.067 42.930 0.000 2.957 .072 41.113 0.000
 Academic Self-Efficacy 0.018 0.007 0.256 2.687 0.008 0.031 .006 0.428 4.784 0.000
Note: R2 = 0.065; F (1,103) = 7.22, p = 0.008 for African-American students;  
 R2 = 0.183; F (1,102) = 22.89, p =0.0001 for Caucasian American students; 
           Comparison of regression models, F (1, 207) = 29.75, p <0 .001;  
 Comparison of regression coefficients, t = 2.0, p < 0.05       
 
Optimism   
 Intercept 2.870 0.067 43.152 0.000 2.936 0.076 38.518 0.000
 Optimism 0.033 0.013 0.247 2.586 0.011 0.044 0.015 0.278 2.922 0.004
Note: R2 = 0.048; F (1,103) = .24, p = 0.63 for African-American students;  
 R2 = 0.124; F (1,102) = 1.58, p =0.21 for Caucasian American students; 
 Comparison of regression models, F (1, 207) = 17.87, p <0 .001;  
 Comparison of regression coefficients, t = .76, p > 0.10       
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Using Linear Regression and Propensity Score  
Matching to Estimate the Effect of Coaching on the SAT 

    Ben Domingue           Derek C. Briggs 
University of Colorado 

Using observational data from the Education Longitudinal Survey of 2002, the effect of coaching on the 
SAT is estimated via linear regression and propensity score matching approaches. The key features of 
taking a propensity score matching approach to support causal inferences are highlighted relative to the 
more traditional linear regression approach. A central difference is that propensity score matching 
restricts the sample from which effects are estimated to coached and uncoached students that are 
considered comparable. For those students that have taken both the PSAT and SAT, effect estimates of 
roughly 11 to 15 points on the math section and 6 to 9 points on the verbal are found. Only the math 
effects are statistically significant. We found that coaching is more effective for certain kinds of students, 
particularly those who have taken challenging academic coursework and come from high socioeconomic 
backgrounds. In the present empirical context the summary causal inference being drawn does not depend 
much upon whether the effect is estimated using linear regression or propensity score matching. 

he SAT plays a high stakes role in the American college admissions process. As a consequence, a 
commercial industry has emerged to prepare students to take the SAT. According to The College 
Board, the SAT “tests students’ knowledge of subjects that are necessary for college success” 
(College Board, 2009). If short-term preparation (i.e., “coaching”) can be linked to substantial 

score increases, then the claim that the SAT measures knowledge that is developed gradually over years 
of schooling becomes equivocal. Moreover, if coaching services, some of which are quite expensive, give 
those who can afford them a sizable boost in their SAT scores, then this would further tilt an already 
uneven playing field when it comes to college admissions. One purpose of this study is to gauge the size 
of the coaching effect using data from a recent national cohort of high school students. 
  From an experimental design perspective, the most accurate method of estimating the causal effect of 
coaching would be through the use of a randomized experiment. In principle, randomization allows for 
relatively straightforward estimation of causal effects since, when done correctly, the process of 
randomization ensures that differences between experimental treatment and control groups on some 
outcome of interest can be attributed to the treatment, and not to some other variable. In short, a 
randomized experiment controls for confounding by design. Of course, randomized experiments are both 
expensive and hard to implement on a large scale. In this study we make use of observational data taken 
from the Educational Longitudinal Survey of 2002 (ELS:02). The ELS:02 data is strictly observational in 
the sense that students self-select to participate in test preparation programs. This presents substantial 
complications in drawing causal inferences since score differences between students who do and do not 
receive coaching may be confounded by preexisting differences on variables correlated with both 
coaching status and SAT performance. To account this we use linear regression (LR) and propensity score 
matching (PSM) in an attempt to control statistically for observable confounders in the process of 
estimating causal effects.  A second purpose of this study is to compare and contrast the use of these two 
methods to support causal inferences in an observational setting. 
  We begin by describing the existing research on SAT coaching and highlight some methodological 
differences and similarities between LR and PSM. In the next section, we describe the ELS:02 data, 
presenting descriptive statistics for coached and uncoached students. Since propensity score matching is 
an umbrella term that encompasses a variety of different analytical procedures, we present the specifics of 
the two PSM approaches we will be invoking. Sections that focus on our empirical results, and the 
sensitivity of these results to our modeling assumptions follow. Finally, we compare this research to other 
studies in the SAT coaching literature and make a few methodological recommendations regarding the 
use of PSM to support causal inferences in education research contexts. 
 

Background 
  Since 1953 there have been more that 30 studies conducted to evaluate the effect of coaching on 
specific sections of the SAT (Briggs, 2002). While one might assume from this that the empirical 
effectiveness of coaching on SAT performance has been well-established, this is only somewhat true. One 
principal reason for this is that the vast majority of coaching studies conducted over the 40 year period 
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between 1951 and 1991 tended to involve small samples that were not necessarily representative of the 
national population of high school seniors taking college admissions exams, and of the programs offering 
test coaching. In addition, a good number of these studies contained a variety of methodological flaws 
that compromised the validity of their conclusions. To date, the findings from analyses that are at both 
methodologically sophisticated and generalizable have indicated that the effect of coaching is about 10-20 
points on the math section of the SAT and and 5-10 points on the verbal section of the exam (Powers & 
Rock, 1999; Briggs, 2001; Briggs, 2002). 
  There are two principal motivations for conducting a new study to estimate the effect of SAT 
coaching using data from ELS:02. First, the SAT has undergone substantial changes to its format over the 
years (Lawrence et al., 2004). The SAT administered to students in the ELS:02 sample in 2003-2004 was 
considerably different in format than the SAT administered from 1953 through 1992 (the period during 
which the bulk of coaching studies were conducted). In particular, the types of items thought to be most 
coachable in the critical reading and math sections have been replaced (antonyms and analogies in the 
critical reading section; quantitative comparisons in the mathematics section). Because of this it is 
conceivable that the SAT has become less coachable over time, and this is one hypothesis we are testing 
in the present study.  
  Second, a relatively new method of estimating causal effects from observational data—propensity 
score matching (PSM)—has become increasingly popular over the past decade. The studies of Briggs 
(2001) and Powers and Rock (1999) both illustrate the classic approach of drawing inferences from 
observational data using a linear regression model (although both studies did use other methods as well): 
A single dummy variable represents treatment status and is included in a regression alongside other 
variables thought to be confounders. The estimated coefficient on the treatment variable represents the 
causal effect of coaching. There are, however, some clear limitations to the estimation of causal effects 
using linear regression. The biggest is that the method generally assumes that all potentially confounding 
variables have been measured without error and properly included in the model’s specification (for details 
on the assumptions of the linear regression model in the context of estimating a coaching effect, see 
Briggs, 2004). Beyond this, the approach makes strong parametric assumptions. When many covariates 
are included in the model, the analyst is often implicitly relying upon assumptions of linearity and 
extrapolations well beyond observed variable combinations to correct for differences between treated and 
control units.  
  Rosenbaum and Rubin (1983) originally developed the idea and theoretical justification for PSM. The 
method tends to be consistent with an underlying framework for causal inference described by Holland 
(1986) as “Rubin’s Causal Model.” Recently the use of PSM within the framework of Rubin’s Causal 
Model has become more visible in the education research literature. Hong and Raudenbush (2005, 2006) 
used PSM to evaluate the effect of kindergarten retention policies on academic achievement. Morgan 
(2001) used PSM to analyze the effect of Catholic schools on learning. Ruhm and Waldfogel (2007) used 
ratio matching techniques to estimate the effect of prekindergarten on later performance. A complete 
literature review would be beyond the scope of this paper, but these articles offer some indication of the 
range of educational questions that have been addressed using PSM techniques. Details for the particular 
analysis used here are given in the next section; a more general survey of PSM techniques is given in 
Caliendo and Kopeinig (2008). While PSM methods still make the assumption of “selection on 
observables,” they typically relax the parametric assumptions associated with regression-based 
techniques, and perhaps most importantly, they focus the researcher’s attention on the comparability of 
treatment and control units. Some subjects receiving an experimental treatment are simply not comparable 
to subjects receiving a control and vice-versa. Under a PSM approach subjects that are not comparable are 
excluded from the analysis and not used to estimate a causal effect. 
The PSM approach has prompted strong claims from its proponents: “With flexible matching routines 
increasingly available, will regression adjustment for observational studies soon be obsolete?” (Hansen, 
2004, p. 617). In fact, Hansen raised this question after performing a new analysis using the data from the 
Powers and Rock (1999) study on coaching effectiveness. Powers and Rock had used PSM methodology 
alongside regression to estimate the effect of SAT coaching, and the two methods had yielded similar 
results. In contrast, Hansen’s estimates were roughly 5-8 points higher in math and 6 points lower in 
verbal, and he concluded that they were more defensible than those found by Powers and Rock1. In this 
paper, we revisit this conclusion in the context of comparing the LR and PSM approaches to estimating 
the effect of coaching on SAT performance. 
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ELS Variables 

  Our analysis is based upon data from the ELS:02 survey conducted by the National Center for 
Educational Statistics. The survey followed a longitudinal cohort of high school sophomores in 2002 
through their senior years (2004) and beyond (2006). It is designed to be representative of this national 
cohort of American high school students. The ELS:02 data contains basic demographic information about 
students, as well as more specific information about their academic achievement, attitudes, and opinions 
on a variety of subjects related to their schooling experiences. Information in the dataset on students’ 
grades, test scores, and course-taking are based on official high school transcripts and test reports from 
the test makers rather than being self-reported. 
  The “treatment” of interest in this study is defined by the responses to a set of questions that asked 
students whether and how they prepared for the SAT. Students were able to indicate if they had prepared 
through the use of school courses, commercial courses, tutoring, or a variety of preparatory materials. In 
what follows, a coached student is defined as one that reported participating in a commercial preparatory 
course. Of the 16,197 students in the ELS:02 data, we restricted the sample to those students who had a 
10th grade transcript available, responded to both the 2002 (grade 10) and 2004 (grade 12) surveys, and 
took the PSAT and SAT. We refer to these students as the “POP1” sample (N = 1,644). In contrast, we 
run separate analyses for a “POP2” sample (N = 2,549) that represents those students who took the SAT 
but did not take the PSAT2. There are some distinct differences between the types of students who take 
the PSAT and those who do not. Students that take the PSAT are much more likely to be college-bound 
and motivated to perform well on the SAT.  Splitting the sample into the POP1 and POP2 groupings 
allows for explicit comparison to the results from Briggs (2001), where the same groups of students were 
defined from an earlier survey of a longitudinal student cohort from 1988 to 1992 (NELS:88).  However, 
from the perspective of drawing unbiased causal inferences, the POP1 sample is clearly preferable to the 
POP2 sample because PSAT scores (available for the former but not the latter) are well correlated with 
both coaching status and subsequent SAT performance.  
 Descriptive statistics for the variables used in this analysis are given in Table 1 (an index of the 
variables used in this study is given in the Appendix). What sorts of variables that may be correlated with 
SAT performance serve to distinguish students that do and do not participate in commercial coaching? As 
elaborated in previous work (Briggs, 2002) these sorts of variables fall into roughly three groups: 
demographic characteristics of students, variables that proxy for academic achievement and aptitude, and 
motivational variables. In Table 1 we can see to what extent coached and uncoached students differ with 
respect to these variables. In many cases the differences are significant. For example, relative to 
uncoached students, coached students in POP1 score 2.3 points better on the PSATM and 1.6 points 
better on the PSATV (or 23 and 16 points when expressed on the SAT scale shown in Table 1).  For 
students in the POP2 sample such comparisons with respect to PSAT obviously cannot be made, 
however, students participating in the ELS base year survey (in grade 10) were administered standardized 
tests in both math (BYMATH) and reading (BYREAD).  These tests have strong positive correlations 
with the PSAT, so for students in the POP2 sample they serve as a substitute.  However, it seems clear 
that they are an imperfect substitute.  For the POP1 sample, in contrast to the mean differences observed 
on PSAT scores, there is no significant difference in mean BYMATH and BYREAD scores between 
coached and uncoached students.  Hence it is likely that the BYMATH and BYREAD variables used for 
the POP2 sample do not fully capture the differences in prior ability to perform well on high stakes tests 
that is captured by the PSAT variable. 
  Major differences also exist between these two groups in terms of socio-economic status (SES), GPA 
(especially in POP2), group percentage of Asian students, percentages in private and rural schools, 
percentages of remedial course takers, percentages of ESL students, and percentages taking college 
preparatory curriculum and doing more than 10 hours per week of homework. In contrast, coached and 
uncoached students have fairly similar numbers of math credits and attend urban schools in similar 
percentages (especially in POP1). Student motivation is classic example of a plausible confounding 
variable in the context of coaching studies. Since the SAT is viewed by students as a crucial piece of their 
college application, they may have far greater motivation to perform well on this test than previous  
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Table 1. Variable Means for POP1 and POP2 by Coaching Status 

  POP1a POP2b 
Variable & Brief 
Description Coached Uncoached p value Coached Uncoached p value 
PSATM*10c 542 519 0 NA NA NA 
PSATV*10c 524 508 0 NA NA NA 
BYMATH-ELS Math Test 57.6 57.2 0.19 56.2 55.8 0.19 
BYREAD-ELS Reading 
Test 57.2 56.9 0.25 55.2 55.1 0.46 
AGE/12c 17.8 17.9 0.26 17.9 17.8 0.10 
SES Index 0.68 0.38 0 0.56 0.3 0 
GPA 3.09 3.05 0.14 3.08 2.96 0 
MCRD-# of math credits 3.84 3.81 0.28 3.77 3.76 0.44 

Below variables are categorical, means expressed as percents. 
FEMALE 53 56 0.15 57 50 0 
ASIAN 24 12 0 28 16 0 
BLACK 12 8 0.01 15 14 0.36 
NATIVE 3 3 0.48 4 5 0.18 
HISPANIC 6 9 0.06 12 11 0.22 
PRIVATE 56 43 0 36 25 0 
RURAL 5 12 0 10 18 0 
URBAN 39 39 0.50 42 33 0 
AP-Taken an AP course 58 52 0.01 64 48 0 
REM_ENG-Remedial 
English 7 6 0.33 6 7 0.21 
REM_MATH-Remedial 
Math 8 7 0.18 6 8 0.17 
COLL_PREP-HS 
curriculum 78 75 0.12 76 72 0.05 
HW->10 hours/wk 
homework 40 25 0 34 22 0 
ESL 23 13 0 23 16 0 
EDU_AFTER_HSd 96 88 0 92 86 0 
COLLEGE_INFOd 6 11 0 6 10 0 
PRNTS_DISC_PREPd 34 19 0 37 22 0 
PRNTS_DISC_SCHd 39 33 0.02 45 37 0 
NERVES.Md 1 2 0.05 NA NA NA 
NERVES.Vd 2 2 0.34 NA NA NA 
UNDERPERFORM.Md 14 14 0.44 13 16 0.03 
UNDERPERFORM.Vd 13 15 0.22 14 16 0.08 
N 357 1195   448 1941   
a. All students who responded to 2002 and 2004 surveys, had 10th grade transcripts, and took the 
PSAT and SAT. 
b. All students who responded to 2002 and 2004 surveys, had 10th grade transcripts, and took the SAT 
(but not the PSAT). 
c. PSATM, PSATV, and AGE are all transformed for the table, but the untransformed variables were 
used in the analysis. 
d. See Appendix.  
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standardized tests (such as the PSAT or the ELS base year tests) or in their classes (as expressed by their 
GPA). Variables such as whether or not a student plans to continue his/her education after high school 
(EDU_AFTER_HS) and whether or not a student has sought out information about college 
(COLLEGE_INFO) capture some aspects of student motivation. We also created two new variables as 
proxies for motivation: UNDERPERFORM and NERVES. Students with a low GPA (less than 3.0) but a 
math or verbal score greater than the mean (for POP1 or POP2) on the ELS base year test were given a 1 
on the variable UNDERPERFORM. We reasoned that such students have greater academic ability than 
their GPA suggests, and may sense a greater need to perform well on the SAT as the deadlines for college 
admissions approach. Should these students elect to get coached in preparation for the SAT, part of any 
score increase may be due to their new-found motivation rather than coaching. Those students who did 
substantially worse on the PSAT than we would have predicted given their performance on the ELS base 
year tests get a value of “1” on the variable NERVES3. Such students, doing worse on the PSAT than they 
may have expected, may be quite likely to sign up for coaching. We may falsely attribute a later score 
gain on the SAT for these students to coaching when we are in fact merely seeing a regression to the 
mean. The second variable relied upon a student’s PSAT score, so we created it only for those students in 
POP1. As can be seen in Table 1, we found significant differences between coached and uncoached 
students on some of these variables as a function of SAT test subject and POP1 or POP2 membership. 
  One complication in using the ELS data is that there is a substantial amount of missing data. To 
simply exclude the missing cases would not only eliminate a large percentage of our data, but would also 
necessitate either the “missing at random” or “missing completely at random” assumptions (Rubin, 1976) 
which may be difficult to support. In examining the variables we found that certain dichotomous variables 
contain the bulk of the missing data4. Rather than simply throwing these cases out, we included 
missingness as an additional level of these variables5. This strategy, also followed by Hansen (2004), 
allowed us to include most of the POP1 and POP2 samples in our analysis. Only students with missing 
data on our continuous variables were removed from the subsequent analysis. This decreased the POP1 
sample from 1,644 students to 1,552 and the POP2 sample from 2,549 to 2,389. While this is not the only 
approach available for dealing with missing data (imputation techniques would also be an option), this did 
allow us to retain most of our sample without a substantial increase in the complexity of our analysis. One 
final complication was that each student who failed to respond to the question regarding being Black also 
failed to respond to the question about being of Native American origin. Since this led to linearity 
between these variables, they were aggregated into a variable called RACE. 
 

Method 
  Because the approach typically used in a regression analysis is well understood, we will focus here on 
the methods used in our PSM analysis. Similar to Caliendo & Kopeinig (2008), we break a PSM analysis 
into five separate steps:  

1. Estimating the Propensity Score  
2. Implementing a Matching Algorithm  
3. Assessing the Balance after Matching  
4. Computing an Effect Estimate  
5. Sensitivity Analysis  

We shall discuss these five steps as we implement them in our analysis that follows. 
  The propensity score is at the core of the PSM methodology. It is the estimated probability of the unit 
of analysis receiving the treatment given the observed covariates, typically computed using logistic 
regression. Unbiased estimation of causal effects relies upon selection into treatment being a function of 
only those covariates used in the estimation of propensity scores. What to include in the selection 
function, the function which predicts treatment status, and how to choose its functional form are aspects 
of the methodology about which there is still some confusion in the literature. However, one agreed upon 
aspect in the PSM literature is that the success of the selection function should be the “balance” it 
generates in the distribution of covariates among treatment and control groups that have been matched 
according to their propensity scores.  
  Researchers have used the estimated propensity scores to compare treatment and control groups in 
several ways—inverse propensity weighting and kernel matching being two alternatives (see Frank et al., 
2008 for an example of the first and Callahan et al., 2009 for an example of the second)—but in the 
present students we focus on two matching approaches that appear commonly in education research 
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applications: subclassification and optimal pair matching. In the subclassification approach, units in the 
common support (the area of overlap on the estimated propensity score between the coached and 
uncoached groups) are split into subclasses based upon the quantiles of the distribution of the estimated 
propensity scores for the coached students. In the process we eliminate those students from the analysis 
who lack directly comparable counterparts in terms of their propensity scores. As noted earier, this 
constitutes a key distinction of PSM relative to LR. (As it turns out, in this study there is good overlap 
between coached and uncoached students on the estimated propensity scores, so we do not lose 
substantial portions of the POP1 or POP2 groups.) The optimal pair match is a one-to-one matching 
algorithm, meaning that each coached student is matched to a single uncoached student. A consequence 
of pair matching is that a larger number of uncoached students will be excluded from the analysis relative 
to subclassification. Optimal matching is done such that we obtain the lowest possible mean difference 
across all of the matches, hence the use of the term “optimal”. We used the R statistical computing 
package (R Development Core Team, 2008) as well as specialized matching software (Ho et al., 2004) to 
perform the propensity score estimation and matching.  
  Propensity scores are a means to an end. They are used to match treatment and control units such that 
after the units have been matched, their covariate distributions will be equivalent. For example, prior to 
matching, coached students may have higher mean PSAT scores than uncoached students. After 
matching, the PSAT means (and SDs) for coached and uncoached students should be about the same. 
Balance is a necessary condition for unbiased estimation via PSM. We apply two approaches to evaluate 
balance: the reduction in standardized mean differences after matching and an omnibus test for balance 
(Hansen & Bowers, 2008). Standardized differences are differences in coached versus uncoached 
covariate means relative to a weighted combination of the standard deviations across matched units. The 
omnibus test for balance is designed to answer the following question. Is the degree of difference between 
the treatment and controls groups consistent with that which would be expected between two groups 
randomly created from a single sample, as in an experiment?  The test statistic we use, computed via the 
software of Bowers et al. (2008), simultaneously tests a Fisher Randomization Hypothesis for all 
covariates.  
  If the matched data looks as though it could have come from randomization, the simplest approach to 
computing an effect estimate is to compare differences in group means. If selection into treatment is 
solely a function of the observable data, then this will be an unbiased estimate of the treatment effect 
(Rosenbaum & Rubin, 1983).  This is the basic idea behind the approach we use to estimate the coaching 
effect under the subclassification PSM approach. In contrast, for the optimally pair matched data, we 
depart from this simple approach because clear imbalances remain on important covariates (the PSAT for 
the POP1 sample and the ELS base year tests for the POP2 sample), even after matching. Hence we 
estimate the coaching effect after adjusting for remaining PSAT score differences using a regression 
model.  We estimate standard errors using the Huber-White correction to adjust for the clustering of 
students at the school level.  
  As with the LR approach, the validity of the PSM-based estimates for the coaching effect depend 
most fundamentally upon the availability of all the relevant variables that predict whether or not a student 
is likely to be coached. Rosenbaum (2002) outlines a procedure which allows us to check the robustness 
of our results to certain deviations from this assumption. In particular, we assume that there exists a 
hidden variable with a known relationship to treatment status. Using Keele’s (2008) software, we are able 
to examine the degree to which our effect estimates may change if such a confounder were to exist. 
 

Results 
Linear Regression 
  In presenting the results, we first discuss the results from the regression analysis. Table 2 shows the 
coefficient estimates for each of four regressions: both sections of the test for both POP1 and POP2 
samples. The estimated effect of coaching on the math section is 11 and 22 points for the POP1 and POP2 
samples respectively, both statistically significant at the .01 level. For the verbal section, the effects were 
6 points for POP1 and 8 points for POP2, only the second of which was statistically significant at the .05 
level.  
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Table 2. Coefficient Estimates with Huber-White Standard Errors for Linear Regression Analysis 

  SATM SATV 
 POP1 POP2 POP1 POP2 

Variable Coeff SE Coeff SE Coeff SE Coeff SE 
(Intercept) 41.7 51.7 63.0 55.5 48.5 45.4 29.8 61.9 
COACH 11.3 3.1 21.5 3.0 5.8 3.6 7.9 3.8 
PSATM 5.0 0.3 NA NA 0.5 0.3 NA NA 
PSATV 1.0 0.3 NA NA 6.4 0.3 NA NA 
BYMATH 3.3 0.4 7.6 0.3 0.8 0.3 2.3 0.3 
BYREAD 0.0 0.3 0.6 0.2 1.8 0.3 5.3 0.3 
AGE -0.2 0.3 -0.4 0.2 -0.2 0.2 -0.1 0.3 
SES 1.4 2.3 10.2 2.1 7.1 2.1 18.1 2.4 
FEMALE -13.0 2.7 -18.0 3.0 0.2 2.9 -6.5 2.9 
ASIAN1 0.9 5.6 10.5 4.7 -2.2 5.4 -13.4 4.5 
ASIANNA -41.6 31.6 -71.0 70.9 19.4 27.9 -57.2 49.8 
RACENATIVE 6.8 6.7 -0.2 5.9 1.8 10.1 -0.3 6.7 
RACEBLACK -11.4 4.0 -16.1 4.9 8.2 5.4 -4.5 5.2 
RACEBOTH -28.9 11.6 -9.5 13.5 0.4 12.3 -4.7 10.7 
RACEBOTHNA 31.3 31.2 72.9 70.4 -21.8 26.7 52.2 49.4 
HISPANIC1 -9.8 4.3 -17.0 4.9 0.5 7.4 -2.9 6.5 
HISPANICNA 2.3 18.2 12.4 13.2 21.2 16.4 -17.2 9.4 
PRIVATE 1.6 3.2 8.4 3.7 2.7 3.5 16.5 4.3 
RURAL -4.7 4.9 -2.1 3.9 -4.3 4.2 2.5 4.6 
URBAN -6.5 3.4 -1.0 3.5 -10.4 3.7 -2.4 3.9 
AP 12.5 3.2 27.0 3.2 12.6 3.4 33.7 3.5 
REM_ENG1 12.1 9.1 17.3 8.0 2.7 9.3 -3.5 8.7 
REM_ENGNA -5.7 14.4 2.4 12.2 7.7 13.3 -10.3 13.6 
REM_MATH1 -12.4 9.0 -23.6 7.6 -0.9 7.2 7.6 9.1 
REM_MATHNA 11.9 15.8 5.1 12.3 -1.3 12.8 16.4 12.7 
COLL_PREP -1.0 3.4 -0.6 2.8 -1.4 3.2 6.7 3.0 
MATH_CRD 0.5 1.8 2.8 1.4 0.4 1.8 -2.2 1.5 
HW 0.6 3.3 8.5 2.8 2.2 3.0 3.7 3.2 
ESL 17.8 4.3 8.0 4.0 2.3 4.5 -8.6 4.9 
EDU_AFTER_HS 1.5 4.2 0.5 3.5 -0.4 4.4 -6.5 4.1 
COLLEGE_INFO1 -4.4 5.8 1.8 4.5 3.1 4.4 4.0 4.9 
COLLEGE_INFONA 4.5 6.6 16.5 7.3 -0.1 8.1 12.8 7.1 
PRNTS_DISC_PREP1 1.9 3.8 5.8 3.4 5.3 3.6 -0.8 3.8 
PRNTS_DISC_PREPNA -9.7 9.2 -21.0 10.0 13.0 9.6 -6.0 11.8 
PRNTS_DISC_SCH1 -7.6 3.0 -8.1 2.8 -5.9 3.1 -3.4 3.1 
PRNTS_DISC_SCHNA 16.3 10.1 18.4 10.8 -19.2 9.8 -8.2 12.4 
GPA 14.4 3.8 23.3 3.4 7.9 3.5 24.6 3.4 
UNDERPERFORM.M 3.0 5.7 9.5 4.6 1.9 4.7 1.3 5.4 
UNDERPERFORM.V -2.1 4.6 -10.5 4.2 -3.2 4.3 -10.0 4.9 
NERVES.M 25.9 13.3 NA NA 7.9 11.8 NA NA 
NERVES.V 12.5 10.2 NA NA 25.0 11.4 NA NA 
N  1552   2389   1552   2389   
R2 0.77   0.73   0.77   0.67   
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  Since the SAT scale has been internalized by many who have been educated in the United States, the 
magnitude of our causal effect has inherent meaning to those who recall taking the test as a high school 
student. However, there are two additional ways of contextualizing this effect. We can first compare our 
effect estimates to the unadjusted difference in SAT means for coached and uncoached students to assess 
the impact of adjusting for confounding variables. On the math section, there were unadjusted differences 
of 31 and 36 points in POP1 and POP2 respectively. After adjustment using LR, those differences fall to 
11 and 22 points respectively. On the verbal section, initial differences of 23 and 22 points were reduced 
to 6 and 8 points for POP1 and POP2. Aggregating the effects across both parts of the test, we find that of 
the initial 54 point difference between coached and uncoached students in POP1, only 17 points can be 
attributed to coaching. For POP2, we can only attribute 30 of the 58 point initial difference to coaching. 
We can also express the coaching effects as effect sizes.  Using the standard deviation of the uncoached 
students, the effect sizes of coaching on the math part were 0.11 and 0.20 for POP1 and POP2 samples. 
On the verbal section, the effect sizes were .06 and .07 for POP1 and POP2 samples respectively. 
 
Propensity Score Matching 
  As a first step in our PSM analyses, we ran a logistic regressionsusing the full set of covariates shown 
in Table 2. Logistic regression coefficients for the subclassification and pair matching approaches are 
shown in Table 3. We distinguish between the logistic regression coefficients for subclassification and 
optimal pair matching because in each case, different samples of students were included or excluded in 
the matching procedure depending upon where they fell within the area of common support (or overlap) 
on the estimated propensity score, and whether (in the case of the optimal matching approach) an 
uncoached student could be matched to a specific coached student. In the opimal pair matching 
apprpoach, we only excluded those coached students from matching who were more likely to be coached 
than any uncoached student.  In the subclassification appoach, we also excluded students who were more 
like to be uncoached than any coached student.  Once students were excluded, the logistic regression was 
run again using the restricted sample. Matches in the optimal pair match were made using logit units 
rather than the actual propensity scores.  The difference between similar propensity scores on the high or 
low end of the propensity score scale (near 0 or 1) will increase when logit units are used instead. Since 
the goal is to have the smallest global difference, using the logit forces better matches at the high and low 
end of the propensity score scale. Following the lead of Rosenbaum & Rubin (1983), we use quintiles of 
the propensity score distribution to form our subclasses6.   
 The focus in PSM on comparing only those units who are directly comparable on the estimated 
propensity score is important, so we draw some attention to the students who were “unmatchable” and 
hence, unlike in LR, were excluded as a basis for the subsequent estimation of a causal effect. Under 
subclassification, both coached and uncoached students who fall outside the region of common support 
were excluded. In POP1, this led to the exclusion of 54 uncoached students and 4 coached students. The 
coverage of the common support was even better in POP2, only necessitating the exclusion of 4 students, 
of which only one was coached. In the optimal pair match we only removed 4 coached students from 
POP1 and 1 coached student from POP2. After matching, 842 of the uncoached students from POP1 were 
not matched to coached counterparts, and 1,494 uncoached students from POP2 were not matched, an 
illustration of the restrictive nature of the pair matching approach. 
 As a first empirical evaluation of the extent to which balance has been achieved, Figure 1 shows 
plotted density curves of propensity score distributions for both POP samples under each matching 
algorithm. As we would expect, the top row of figures indicates that there are higher percentages of 
coached students who were likely to be coached (i.e., had higher propensity scores) on the basis of our 
predictor variables. The relative paucity of uncoached students in the higher range of the estimated 
propensity score indicates that the causal estimates for these subclasses, especially the highest subclass 
(notice that the vertical lines represent the subclass divisions), will rest upon comparisons of many 
coached students to few uncoached students.  
 Balance requires more than similar distributions for the estimated propensity scores among coached 
and uncoached groups; it is also necessary for the distributions of each relevant covariate to be similar. 
Figures 2 and 3 illustrate graphically the improvement in standardized mean differences after matching. 
In all four cases, there are generally big improvements in balance after matching. Balance appears to be 
strongest under the subclassification approach, where differences in covariates between the groups are  
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Table 3. Logistic Regression Coefficients for Subclassification 
 POP1 POP2 
 Variable Coeff SE Coeff SE 
(Intercept) -2.84 3.01 -5.25 2.38 
PSATM 0.02 0.01 NA NA 
PSATV 0.00 0.01 NA NA 
BYMATH -0.03 0.02 -0.01 0.01 
BYREAD 0.00 0.01 -0.02 0.01 
AGE 0.00 0.01 0.02 0.01 
SES 0.59 0.11 0.50 0.09 
FEMALE -0.07 0.15 0.20 0.12 
ASIAN1 0.78 0.24 0.70 0.17 
ASIANNA 0.11 1.37 -0.20 0.32 
RACENATIVE -0.56 0.51 -0.11 0.30 
RACEBLACK 0.60 0.24 0.45 0.18 
RACEBOTH 2.50 0.81 -0.17 0.64 
RACEBOTHNA 0.02 1.30 NA NA 
HISPANIC1 -0.32 0.33 0.43 0.22 
HISPANICNA -0.13 0.83 0.19 0.53 
PRIVATE 0.56 0.16 0.40 0.14 
RURAL -0.65 0.30 -0.18 0.19 
URBAN -0.33 0.15 0.05 0.13 
AP 0.01 0.17 0.54 0.14 
REM_ENG1 -0.16 0.46 -0.28 0.39 
REM_ENGNA -0.23 0.90 -0.41 0.66 
REM_MATH1 0.34 0.42 -0.03 0.37 
REM_MATHNA 0.63 0.89 -0.20 0.65 
COLL_PREP -0.04 0.17 0.05 0.13 
MATH_CRD 0.04 0.09 -0.04 0.06 
HW 0.46 0.15 0.25 0.13 
ESL 0.48 0.23 0.16 0.18 
EDU_AFTER_HS 1.10 0.33 0.29 0.20 
COLLEGE_INFO1 -0.28 0.27 -0.42 0.24 
COLLEGE_INFONA -0.48 0.40 0.53 0.30 
PRNTS_DISC_PREP1 0.62 0.17 0.49 0.13 
PRNTS_DISC_PREPNA -0.64 0.62 -0.11 0.45 
PRNTS_DISC_SCH1 0.02 0.16 -0.05 0.13 
PRNTS_DISC_SCHNA 1.29 0.62 -0.53 0.48 
GPA -0.10 0.16 0.10 0.14 
UNDERPERFORM.M 0.12 0.25 -0.05 0.22 
UNDERPERFORM.V -0.22 0.25 0.19 0.22 
NERVES.M -0.12 0.68 NA NA 
NERVES.V 0.33 0.52 NA NA 
N 1494   2385   

 
consistently less than one tenth of an SD. Next we applied the omnibus test described by Hansen & 
Bowers to evaluate whether the degree of balance that we observe is close enought to that which would be 
expected from the creation of two samples from a single population via random assignment. The result in 
each case was a test statistic with a very low p-value, which indicates that the balance within subclasses 
was similar to what one would expect had coached and uncoached students been randomly assigned (this 
was true for matches with both POP1 and POP2 samples).  Interestingly, however, while the omnibus test 
suggests that both approaches result adequate balance, under the optimal matching  
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Figure 1. Density Curves for the 4 Matched Data Sets 
 

approach there are clearly a number of variables for which important differences between the two groups 
remain.  Most noteably for the POP1 samples, coached students continue to have higher PSAT scores 
than their uncoached counterparts.  For the POP2 samples, scores on the ELS base year tests in math and 
reading (BYMATH and BYREAD) actually become somewhat less balanced between coached and 
uncoached students after matching.  These imbalances point to potential sources of bias that would still 
need to be taken into account when estimating coaching effects, and they also underscore the importance 
of not relying solely on tests of significance to support a conclusion that all plausible confounders are 
suitably balanced. 
 To compute effect estimates from our subclassified data we regressed the math or verbal portion of 
the SAT on a dummy variable indicating coaching status as well as a dummy variable indicating the 
propensity score subclass for the student. For math, the estimated effects were 12 and 22 points in POP1 
and POP2 respectively. For verbal, they were 6 and 9 points. Only the POP2 effect for math was 
significant at the .05 level. In the optimally pair matched data, we began by regressing the sections of the 
test on a dummy variable for coaching status. This led to effects of 24 and 18 points in math for POP1 
and POP2 and 14 and 0 points in verbal. However, due to the remaining imbalances on the PSAT tests 
shown in Figure 3, we ran subsequent regressions in which the variables PSATM and PSATV were 
included as controls for the POP1 sample, and the variables BYMATH and BYREAD were included as 
controls for the POP2 sample. In these regressions, the estimated math and verbal effects for POP1 fell 
from 24 and 14 points to 15 and 9 points.  In contrast, because uncoached students had higher mean 
BYMATH and BYREAD scores than coached students after matching, the math and verbal effects 
increased from 18 and 0 points to 24 and 6 points after regression adjustment. These results are 
summarized in Table 4. Most of the coaching effect estimates for math are statistically significant at the 
.05 level in both POP1 and POP2 samples; in contrast, none of the verbal estimates meet this 
conventional threshold7.   
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Figure 2. Improvement in Standardized Differences after Subclassification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Improvement in Standardized Differences after Optimal Pair Match 
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 One benefit of the 
subclassification approach is 
that it allows us to further probe 
the LR constraint that the effect 
of coaching can be best 
summarized with a single 
number.  Table 5 shows the 
estimated coaching effect in 
each subclass as defined by 
ranges of the propensity score 
distribution.  It also shows the 
ceiling for the estimated 
propensity scores in that 
subclass as well as the mean 
SES for the students in each 
subclass. Note that the effects 
vary quite dramatically with the 
highest effect estimates found in the higher subclasses. The higher subclasses contain those students most 
likely to be coached.  Since the propensity score correlates strongly and positively with SES, one 
plausible explanation is that more affluent students are buying coaching that is both more expensive and 
more effective. 
 
Sensitivity Analysis 
  The coaching estimates from our original regression analyses were predicated upon the constraint that 
there is a single mean causal effect that applies to all students. As the results from the subclassification 
analysis above indicate, this may be unreasonably restrictive. Through the inclusion of interaction terms 
in the regression model, we can readily evaluate the possibility of differential causal effects of coaching 
for selected subsamples of students. In what follows we report these results (summarized in Tables 6 & 7) 
only for student subgroups in the POP1 sample.  We focus on the POP1 sample because we are more 
confident in these coaching estimates since they control for preexisting differences in PSAT performance. 
  One characteristic of coaching services that our treatment variable cannot operationalize is that these 
programs vary widely in cost. Extremely expensive small group work with college professors may be 
classified as coaching right alongside much less expensive coaching offered in community centers. The 
effects of these two types of coaching may be quite different. Since we do not have information on how 
much money students paid for coaching, we instead use a dummy variable indicating whether a student 
was in the top quartile of the distribution for the SES variable supplied in the ELS:02 data. Those students 
that were in the top quartile of the SES index are potentially paying for much more expensive (and 
possibly higher quality) coaching. When coached students in the top SES quartile are compared to 
uncoached students in the top SES quartile, we find a mean difference of 15 points on SAT math scores. 
In contrast, amongst students in lower SES quartiles, coaching has only a 5 point effect. Hence math 
coaching appears to be 10 points more effective for high SES students than it is for lower SES students. 
On the verbal section the coaching by SES interaction is weaker: the effect is 9 points for high SES 
students but just 2 points for lower SES students.   
 There appear to be no gender related differences in the effectiveness of coaching. On the other hand, 
there are some important differences as a function of race/ethnicity. Coaching is differentially effective 
for Asian students, for whom the coaching effect is 5 and 14 points higher on the math and verbal 
sections respectively. One explanation for this is that 70% of the coached Asian students are also ESL 
students. For Black students, the effect of coaching on the math portion of the test was 15 points higher 
than it was for non-Black students.  Conversely, the effect on the verbal section of the SAT for Black 
students was 18 points lower than the coaching effect for non-Black students.  The latter result is driven 
by our finding of a negative effect for Black students on the verbal section of the SAT. Finally, students 
with AP course experience seem to benefit considerably from coaching. On each section of the SAT, we 
found a coaching effect that was 12 points higher than similar coached students who had never taken an 
AP course.  

Table 4. Effect Estimates from Matching with Huber-White 
Standard Errors in Parentheses  
  Math Verbal 
Matching 
Method POP1 POP2 POP1 POP2 
Subclass 12.4 21.9 6.3 8.6 
 (8.4) (6.5) (8.5) (6.6) 
N 1494 2385 1494 2385 
Optimal 23.5 18.0 14.2 0.3 
 (10.3) (9.1) (10.5) (8.9) 
Optimal  15.1 24.2 8.5 6.4 
with Smoothing (4.7) (4.5) (4.4) (5.7) 
N 706 894 706 894 
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Table 5. Effect Estimates across Each Subclasses 
 POP1 POP2 
 Subclass Class 

Ceiling 
SES Math Verbal Class 

Ceiling 
SES Math Verbal 

1 0.18 0.17 -18 -13 0.15 0.03 3 -20 
2 0.27 0.55 9 -15 0.21 0.39 23 33 
3 0.35 0.75 37 25 0.27 0.57 27 14 
4 0.48 0.81 36 41 0.37 0.75 58 31 
5 0.85 1.07 72 65 0.71 1.02 72 50 

 

 Turning now to a sensitivity analysis of our PSM results, we consider the effects of some alternate 
specifications and assumptions. A potential mistake one may make in a PSM analysis is to misspecify the 
selection function. We established the selection function used in our analyses through careful 
consideration of what variables should theoretically influence coaching status and SAT results. Once this 
has been established, in our view there is no sound rationale for excluding such variables from the 
selection function on the basis of their statistical significance. Nonetheless, such exclusions are possible 
and even likely whenever the variables for a selection function are chosen by a stepwise algorithm8. To 
assess how sensitive our results are to the exclusion of certain variables from the selection function on the 
basis of their statistical significance, we estimated coaching effects after matching on the basis of a 
restricted selection function. In this approach only those covariates which were significant at the .05 level 
in the initial logistic regression were retained and then the logistic regression was estimated again to 
generate new propensity score predictions. After matching using the same subclassification and pair 
matching techniques described above, we computed new causal effect estimates (summarized in Table 8).  
Most notably, the estimated coached effect was 5 points higher for math (from 12.4 to 17.4) under 
subclassification (POP1 sample), 
and 6 points higher for verbal 
(from 6.4 to 12.1) under optimal 
matching (POP2 sample).  In all 
other cases the coaching effects 
were about the same using either 
selection function.  While a 5 to 6 
point change to the effect may 
seem relatively small as a “worst 
case scenario”, expressed as a 
percentage of the original effect 
(where the “original” effect is 
that deriving from the 
unrestricted selection function) 
they represent substantal 
increases of 40% and 89% 
respectively.  Indeed, the 
differences that arise from this 
adjustment to the selection 
function are about as big as the 
largest differences found when 
shifting from an LR to a PSM 
approach to estimate coaching 
effects. 
  Another type of sensitivity 
analysis is to ask how our effect 
estimates would change in the 
presence of hidden bias  

Table 6.  Interaction Effects on SATM for Selected Variables 
(POP1 Sample) 
 Variable Effect Outside1 Effect Inside2 Difference 
HI_SES   4.7 15.1 10.4 
AP   6.5 14.9   8.3 
FEMALE 11.3 11.2  -0.1 
ESL 10.6 14.1   3.5 
ASIAN 11.1 16.2   5.1 
BLACK 11.4 26.4 15.0

Table 7.  Interaction Effects on SATV for Selected Variables 
(POP1 Sample) 
 Variable Effect Outside1 Effect Inside2 Difference 
HI_SES 1.8   9.4   7.6 
AP 3.7   7.5   3.8 
FEMALE 5.7   6.0   0.3 
ESL 4.8 10.4   5.7 
ASIAN 2.6 17.1  14.5 
BLACK 8.5  -9.4 -18.0 
1 These columns show the coaching effect considering only 
those students outside the group of interest. 
2 These columns show the coaching effect considering only 
those students inside the group of interest. 



Propensity Score Matching 

Multiple Linear Regression Viewpoints, 2009, Vol. 35(1)                                                                                        25 

(Rosenbaum, 2002). This method 
can be used to estimate the upper 
and lower bounds for how our 
effect estimate under the pair 
matching approach would change 
if we did not observe a variable 
which was predictive of treatment 
status. While the technical details 
of how such an analysis is 
conducted are outside the scope 
of this paper, we have found that 
our results are indeed sensitive to 
having fully observed all relevant 
confounders. In the presence of a 
moderate hidden bias9, the effect of coaching in the POP1 sample may range anywhere between 5 to 45 
points on the math section of the SAT and 0 to 25 points on the verbal section.   
 

Discussion 
  The substantive results from this study can be compared to the results of similar studies that have 
evaluated the effect of coaching. Earlier work suggests point estimates for an an overall coaching effect 
across both math and verbal sections of the SAT of roughly 25 points. In particular, we base our 
comparison on the work of Briggs (2001), Powers and Rock (1999), and Hansen (2004). The studies by 
Powers & Rock and Hansen used samples similar to our POP1 group, so comparisons should only be 
made directly to our POP1 findings. In contrast, the study by Briggs used data from NELS:88, which had 
the same structure and sampling design as ELS:02. So for this study coaching effect comparisons can be 
made for both POP1 and POP2 samples. The results from the individual studies are shown alongside our 
results in Table 9. In general, our estimates for the effect of coaching are similar to those of the earlier 
studies. Comparing effects based on regression-based estimates over time suggests that coaching has 
become slightly less effective for both sections of the SAT, at least on the math section of the exam. 
Comparing the different methodologies, Hansen’s PSM analysis (which employed a “full matching” 
approach) produces estimates that are noticeably different for the math and verbal when compared to the 
others. 
  One interesting finding when comparing our results to those from the Briggs study using NELS:88 
data is that the effect of coaching for students who have not taken the PSAT (POP2 sample) is about 10 
points higher in math and 5 points higher in verbal.  The difference in coaching effects in math for 
students in the POP1 and POP2 samples merits closer attention.  On the one hand, this may indicate that 
coaching has a larger effect for those who have not previously taken the PSAT.  On the other hand, this 
may be an artifact of uncontrolled confounding because we are missing information on differences in test-
taking ability captured by PSAT scores. As a check on this, we re-ran the POP1 regressions after 
excluding the PSAT variables as controls.  The resulting coaching effect in math increased from 11 to 16 
points, much closer to the 22 point effect found for the POP2 sample.  This leads us to believe that the 
higher effect estimates for the POP2 sample must be taken with a grain of salt. 
  In this study, the effects estimated on the basis of propensity score subclassification are more 
comparable to the regression results than they are with the optimal pair matching results. A key reason 
that coaching estimates deriving from the subclassication approach and LR approaches are so similar in 
this example is that the estimated propensity score distributions for coached and uncoached were not 
severely imbalanced at the outset. After matching through subclassification, relatively few students were 
excluded when estimating coaching effects. The linear regression and subclassification results use similar 
numbers of students, 1,552 and 1,494 for POP1 in the LR and subclassification respectively and 2,389 
and 2,385 for POP2.  The optimal match results are based upon far fewer students, only 706 and 894 for 
POP1 and POP2.  This is one potential drawback to the pair matching approach10. 
  Properly specifying a selection function can be a challenging part of a PSM analysis. In our view, the 
practice of removing variables from the selection function on the basis of their statistical significance is 
problematic. If theory dictates that a variable be included in the selection function, lack of statistical 
significance is an idiosyncratic reason for removal, one that encourages “fishing for significance.” It is  

Table 8. Sensitivity of PSM Results to Selection Function 
 SATM SATV 
Selection 
Function 

 
POP1 

 
POP2 

 
POP1 

 
POP2 

  Subclassification 
Original 12.4 21.9 6.3 8.6 
Significant 17.4 23.9 7.1 10.2 
 Optimal 
Original 15.1 24.2 8.5 6.4 
Significant 14.0 24.5 7.1 12.1 



Domingue & Briggs 

 
26                                                                                       Multiple Linear Regression Viewpoints, 2009, Vol. 35(1) 

 

Table 9.  Coaching Effect Estimates from Various Studies 
Study SATM SATV 
Powers & Rock (1999)-LR 18 6 
Powers & Rock (1999)-PSM 15 6 
Hansen (2004)-PSM 23 0 
 POP1 POP2 POP1 POP2 
Briggs (2001)-LR 15 81 6 11 
Current Study     
     Regression 11 22 6 8 
     Subclassification 12 22 6 9 
     Optimal Pair (w/ smoothing) 15 24 9 6 
1 These figures were not reported in the Briggs (2001) article but come from the same study. 

 

also problematic because it can create a tautological case for balance. That is, balance is demonstrated 
only after the symptoms of imbalance—non-significant variables in the selection function—have been 
removed.  
  Going back to Hansen’s question, will matching make regression obsolete as a statistical model for 
causal inference?  We think not. Fundamentally, it does not seem any easier to model selection as 
opposed to outcome: both techniques depend on the quality of the available variables to capture sources 
of confounding. Linear regression is also less time-consuming to implement and makes checking for 
interactions much easier. However, there are a number of aspects of PSM which we find appealing. The 
emphasis that a PSM approach places on estimating causal effects on the basis of comparable units is 
important. When confronted with observational data in the context of a regression analysis, a fundamental 
lack of comparability between treatment and control units can be easily swept under the hood. In such a 
context Rubin has warned that “inferences for the causal effects of treatment on such a unit cannot be 
drawn without making relatively heroic modeling assumptions involving extrapolations. Usually, such a 
unit should be explicitly excluded from the analysis” (Rubin, 2001, p. 180). Furthermore, the sensitivity 
analysis approach suggested by Rosenbaum (2002) offers a powerful way of analyzing the robustness of 
one’s results to hidden biases, and such an approach cannot be (or at least has not been) readily applied to 
linear regression. Conclusions based on the results of a PSM analysis can be judged relative to the 
robustness of the results in the presence of hidden biases. While more work is necessary to understand 
what does and does not constitute robustness using this method in educational research, such an approach 
is conceptually appealing. 
  Rubin (2006) has suggested that there is also an ethical advantage to the use of PSM to estimate 
causal effects in that all matching can done without reference to the outcomes.  In principal this would 
seem to support the objectivity of causal inferences. In our view this is overselling the approach.  
Drawing causal inferences about student achievement in an observational setting fundamentally requires 
us to make an informed hypothesis about (a) why subjects choose to participate (i.e., self-select) in 
treatment and control groups, and (b) what characteristics of these subjects are associated with the 
outcome of interest. All statistical modeling that follows hinges upon the quality of this foundation.  If the 
foundation has been well-established, then just as with PSM, the estimation of an aggregate causal effect 
using LR happens only once.  This is precisely the approach that was taken in the present study. 
However, if the foundation has not been well-established—and we suspect this is the case whenever 
covariates are being chosen on the basis of statistical significance—then there is no magic that will pull 
the causal rabbit out of the observational hat. 
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Appendix: Variable Index 
1. SATM: Score on the SATM. Based on ELS:02 [txsatm].  
2. SATV: Score on the SATV. Based on ELS:02 [txsatv].  
3. PSATM: Score on the PSATM. Based on ELS:02 [f1rpsatm].  
4. PSATV: Score on the PSATV. ELS:02 [f1rpsatv].  
5. AGE: Approximate age in months at time of first follow-up survey. Modification of ELS:02 [bydob_p].  
6. SES: The SES index created for ELS. Based on ELS:02 [byses2].  
7. FEMALE: Dummy variable indicating respondent is female. Modification of ELS:02 [bysex].  
8. RACE: Composite variable indicating whether respondent is black or a Native American (including 
natives of Alaska and Hawaii). Based on ELS:02 variables byrace_2, byrace_4, and byrace_5.  
9. ASIAN: Dummy variable indicating respondent is Asian. Based on ELS:02 [byrace_3].  
10. HISPANIC: Dummy variable indicating respondent is Hispanic. Based on ELS:02 [bys15].  
11. PRIVATE: Dummy variable indicating whether respondent attends private school. Modification of ELS:02 
[bysctrl].  
12. RURAL: Dummy variable indicating whether respondent attended a rural school. Modification of ELS:02 
[byurban].  
13. URBAN: Dummy variable indicating whether respondent attended an urban school. Modification of 
ELS:02 [byurban].  
14. AP: Dummy variable indicating whether respondent took an AP or IB class. Modification of ELS:02 
[f1rapib].  
15. REM_ENG: Dummy variable indicating whether respondent took a remedial English class. Based on 
ELS:02 [bys33d].  
16. REM_MATH: Dummy variable indicating whether respondent took a remedial Math class. Based on 
ELS:02 [bys33e].  
17. COLL_PREP: Dummy variable indicating whether respondent’s high school program was college 
preparatory. Modification of ELS:02 [byschprg].  
18. BYREAD: Student’s score on the ELS:02 administered Base Year reading test. Based on ELS:02 [bytxrstd] 
19. BYMATH: Student’s score on the ELS:02 administered Base Year math test. Based on ELS:02 [bytxmstd].  
20. MATH_CRD: Number of math credits from the student’s transcript around the time of the first follow-up 
survey. Based on ELS:02 [f1rhma_c].  
21. HW: Dummy variable indicating whether respondent spent more than 10 hours/week on homework. 
Modification of ELS:02 [bys34b].  
22. ESL: Dummy variable indicating that respondent speaks English as a second language. Modification of 
ELS:02 [bys67].  
23. EDU_AFTER_HS: Dummy variable indicating whether respondent planned to continue education 
immediately after high school. Modification of ELS:02 [bys57].  
24. COLLEGE_INFO: Dummy variable indicating that a respondent did not seek college information from any 
of the listed sources (parents, counselors, etc). Based on ELS:02 [bys59k].  
25. PRNTS_DISC_PREP: Dummy variable indicating whether respondent discussed SAT/ACT preparation 
with parents often. Modification of ELS:02 [bys86f].  
26. PRNTS_DISC_SCH: Dummy variable indicating whether respondent discussed school courses with 
parents often. Modification of ELS:02 [bys86a].  
27. COACH: Dummy variable indicating whether respondent received coaching for the SAT/ACT. 
Modification of ELS:02 [f1s22b].  
28. UNDERPERFORM.M: Dummy variable indicating that a student may have underperformed on the Base 
Year Math test relative to their GPA. Defined further in the data section.  
29. UNDERPERFORM.V: Dummy variable indicating that a student may have underperformed on the Base 
Year Reading test relative to their GPA. Defined further in the data section.  
30. NERVES.M: Dummy variable indicating that a student’s PSATM score was much lower than anticipated 
based on the Base Year Math score, possibly due to nervousness. Defined further in the data section.  
31. NERVES.V: Dummy variable indicating that a student’s PSATV score was much lower than anticipated 
based on the Base Year Reading score, possibly due to nervousness. Defined further in the data section.  
32. HI_SES: Dummy variable indicating that a student’s value on the ELS ses variable was in the top quarter 
for all students in the survey. Modification of ELS:02 [byses2].  
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Notes 

1. In particular, his methodology reduced pre-matching imbalances between treatment and control 
subjects substantially in 27 covariates and still allowed more of the data to be used than would have 
been possible in a regression analysis (Hansen, 2004, p. 617). 

2. The PSAT is essentially a pre-test for the SAT taken by grade 11. 
3. “Substantially worse” here is defined as having a PSAT score less than two RMSEs below their 

predicted score based on the ELS:02 Base Year test. 
4. The variables with the bulk of the missing data were ASIAN, BLACK, NATIVE, HISPANIC, 

REM_ENG, REM_MATH, COLLEGE_INFO, PRNTS_DISC_PREP, and PRNTS_DISC_SCH 
5. For those variables with this extra level, the variable name shown in later tables was modified to 

include a postscript of “1” or “NA”. For example, “REM_ENG” becomes either “REM_ENG1” or 
“REM_ENGNA”. 

6. It is worth noting that this choice often appears rather fluid in empirical applications of PSM.  
Because there are few guiding principles that inform the number of subclasses, some researchers 
essentially use this as a variable that can be manipulated to demonstrate that sufficient balance has 
been obtained.   

7. We have taken a parametric approach to estimate standard errors for the purpose of conducting tests 
of significance.  These standard errors are presented in Table 4. One potential alternative to this 
parametric approach would be the bootstrap, but this was shown to be a poor choice for matched data 
(Abadie and Imbens, 2006). Ho et al. (2007) take the position that since pretreatment variables are 
typically assumed to be fixed and exogenous, standard parametric adjustments are appropriate.  
Further discussion of this issue is outside the scope of the present study. 

8. For example, see , as in Hong & Raudenbush (2006). Though it is not made explicit in the paper that 
a stepwise selection method was used, this was indicated to us in a personal correspondence (G. 
Hong, Personal Communication, September 8, 2008). 

9. In the terminology of Rosenbaum (2002), these ranges correspond to a Γ of 1.3. 
10. An alternative to pair matching that still preserves the notion of finding specific matches for each 

treatment unit would be fixed ratio matching or variable matching.    
 Send correspondence to:  Ben Domingue 
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Hierarchically Ordered Instructional  
Activities for the Development of Clinically  

Relevant Competencies: A Sequential Path Model 
    Frank J. Papa        Randall E. Schumacker 

   University of North Texas Health Science Center         University of Alabama 
A potential benefit in medical education is the use of hierarchially ordered instruction (Bloom’s 
taxonomy of educational objectives) to progressively develop the intellectual capabilities leading to 
clinically relevant competencies in medical students. In this study, faculty observations indicated 
significant improvements in the students clinically relevant competencies compared to students trained 
without hierarchially ordered instructional methods.  Student responses demonstrated that the sequential 
ordering of instructional activities significanlty contributed to the development of their evolving clincial 
competencies (R2

M = .62, p < .05). 
hroughout the 20th century, developmental psychologists observed that human intellectual 
capabilities and knowledge-based competencies matured in a roughly developmentally progressive 
manner. That is, in a series of hierarchically ordered stages representing a logical progression from 
simple to more complex capabilities and competencies. Bloom (1956) codified these observations 

by defining six hierarchically ordered steps beginning with information/knowledge acquisition, followed 
by comprehension, then application, analysis, synthesis, and finally evaluation oriented capabilities and 
competencies. He further posited that hierarchically ordered instruction (i.e., instruction designed to 
sequentially develop these six capabilities/competencies – one step at a time) represented an effective 
instructional strategy (Bloom, 1956, p. 78-88).   
 While there is reason to believe that medical students could benefit from hierarchially ordered 
instructional activities, there is little if any evidence of its utility in the medical education setting. Our 
research therefore investigated the use of hierarchically ordered instruction as a means of improving the 
clinically relevant competencies of sophomore medical students in the area of respiratory medicine. The 
clinically relevant competencies of particular interest in this study involved two core knowledge-based 
competencies:  diagnostic ability and ability to use basic and clinical science concepts and principles to 
explain clinical phenonema.   Our approach involved faculty observations of the performance of students 
trained with hierarchically ordered instructional activities compared with the performance of students 
trained under our traditional curriculum. Our approach requires a brief review of the traditional 
instruction and assessment methods in use throughout our year two curriculum at the time this research 
was conducted and a review of the specific instruction and assessment methods used in our sequential 
ordered instructional program. 
 
Traditional Instruction and Assessment Methods 
 No formalized learning sciences principles, methods, or framework served as a guideline or blueprint 
for the construction of our traditional Year Two coursework. A review of scheduled curricular activities 
revealed that approximately 85 - 90% of all faculty/student interactions occurred in the form of traditional 
lecture based instruction, that is, information acquisition-oriented instruction in a large classroom 
environment. Student and faculty surveys demonstrated that approximately 10% - 15% of scheduled class 
time involved the use of case vignettes or approximately 1 – 2 case vignettes per contact hour. While case 
vignettes represented a small component of instructional activities, there did not appear to be any 
evidence that they were formally used to develop higher level intellectual capabilities (such as 
comprehension and application capabilities). There was no evidence that a formal hierarchical ordering of 
instruction was in place, that is, passive information acquisition oriented instruction preceding case 
vignette based comprehension activities, followed in turn by case vignette based application activities. 
 Following a review of our Year Two examinations, approximately 85% of the test items appeared to 
be first-order, multiple choice, recognition oriented items noted by Bloom (1956) as tests of the recall of 
acquired information.  Approximately 10% - 15% of test items were in the form of more clinically 
relevant second-order questions (case vignette based). A second-order question was defined as students 
being presented with a case vignette followed by a basic or clinical science oriented question. Students 
used the signs and symptoms in the vignette to draw an inference regarding the disease represented by the 

T
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vignette. Having drawn a diagnostic inference, the student then used their diagnoses as the basis for 
answering the basic or clinical science oriented question associated with the test item vignette. Thus, a 
second-order case vignette test item provided students an opportunity to demonstrate both their diagnostic 
competency and evolving ability to apply various basic and clinical science concepts most relevant to the 
disease represented by the vignette.  
 
Sequential Ordered Instruction Method 
 A sequential, hierarchically ordered instructional method was developed for use in a respiratory 
medicine course in year two (RM2).  The new approach replaced all traditional passive in-class 
instructional methods with active, hierarchically ordered instructional activities. The RM2 course 
contained eight problem specific instructional modules as the basis for reorganizing the content of the 
course. The eight problems covered were adult dyspnea, pediatric dyspnea, hemoptysis, cough, epistaxis, 
rhinitis, otalgia and sore throat. Each problem specific instructional module began with information 
acquisition (pre-classroom reading assignments oriented to the problem at hand and its disease 
differentials), followed by in-class, comprehension oriented instructional activities, followed by in-
classroom, application instructional activities. The RM2 course used reality oriented case-vignettes as the 
basis for all comprehension and application oriented instructional activities and used audience response 
technologies to support student engagement and teacher/student interaction in all classroom based 
comprehension and application oriented instructional activities. The RM2 course also used a web-based 
artificial intelligence tool (called KBIT) to provide problem-specific, hierarchically ordered differential 
diagnostic instruction to students. The number of case vignettes used in both the classroom and via 
computer-based training was sufficient to develop and assess the attainment of a rudimentary level of 
competence in diagnosing the disease differentials for each of the eight core respiratory problems as well 
as explain the basic and clinical science concepts underlying each problem and its disease etiologies. 
 RM2 scheduled coursework was allocated as follows. Thirty percent (30%) was devoted to 
information acquisition in the form of student self study of faculty defined reading assignments and 
learning objectives to guide them in their self study efforts. Sixty percent (60%) was devoted to a blend of 
comprehension and application-oriented instructional activities for each of the eight problem-specific 
modules. In developing student comprehension of key concepts and principles, faculty were asked to use 
the 5–6 case vignettes (per hour) to model how they themselves might use their diagnostic and 
explanatory knowledge in each case. Faculty were also encouraged to engage students in rudimentary 
attempts to apply their evolving intellectual processes and knowledge base to the diagnosis and 
explanation of case-related issues. Ten percent (10%) was devoted purely to Problem-Specific 
Knowledge Base Application Sessions (PSKBAS). These PSKBAS activities were held at the end of the 
course.  
 

Method and Procedures 
Participants 
 In-class observations by nine senior faculty (n = 9) served as the basis for assessing the students’ 
evolving diagnostic, explanatory, and overall clinical competencies. These observations occurred in the 
eight PSKBAS which were held at the end of RM2 and conducted in a large classroom setting.   A total of 
eight PSKBAS sessions occurred with each session covering one of the eight previously noted respiratory 
problems. The format for each PSKBAS involved the use of approximately 20 case-based vignettes per 
hour as stems for questions designed to elicit the students’ ability to correctly diagnose each case vignette 
and explain the pathologic,  pathophysiologic, physiologic, biochemical,  or pharmacologic  issues 
associated with particular aspects of each case vignette (second order test items).  Up to four faculty 
members, representing various disciplines such as internal medicine, pediatrics, surgery, pathology, 
biochemistry, physiology, or pharmacology participated in each of the eight PSKBAS. 
 PSKBAS focusing upon adult dyspnea, pediatric dyspnea, hemoptysis and cough involved two hours 
of second-order case-vignette based questions.  The remaining four problems (epistaxis, rhinitis, otalgia 
and sore throat) involved one hour of these second-order case vignette presentations. During these 12 
hours of PSKBAS, over 200 hundred case vignettes with clinically related questions were presented to the 
students. Faculty observed the answers students gave for each case vignette via audience response 
technologies that collected and projected in real time the summarized reports of their responses on a large 
projection screen. Shortly following the completion of the RM2 course, a ten item questionnaire was 



Papa & Schumacker 

 
32                                                                                       Multiple Linear Regression Viewpoints, 2009, Vol. 35(1) 

presented to the nine senior faculty members primarily responsible for constructing and directing all of 
the RM2 course comprehension and application sessions as well as the eight PSKBAS.  
 The faculty observations served as a means of directly evaluating the evolving clinical capabilities 
and competencies of the RM2 trained students, and indirectly, the effectiveness of learning sciences 
framework used to design RM2 coursework. Three faculty questionnaire items were specifically designed 
to gather faculty impressions of student performance in regards to their overall clinical capabilities, 
diagnostic capabilities, and explanatory capabilities (ability to use basic and clinical science concepts and 
principles to explain various clinical phenomena). These three questions all had the same answer set 
which enabled faculty to compare the clinical capabilities of students in the RM2 course to students in our 
traditional instructional course. A chi-square analysis was applied to these faculty based observations and 
impressions.  
 One hundred and nine students (n = 109) out of 121 students completed a 55 item post RM2 course 
questionnaire.  Students responded to Likert scaled items consisting of five possible responses (strongly 
agree, agree, neutral, disagree, strongly disagree). The first seventeen items in Table 1 were placed in 
sequential ordered sets.  The eighteenth item was used as the dependent variable.  The item sets and 
dependent variable were analyzed in a sequential path model. 
 
Research Questions 
 Our research investigation into the development of clinically relevant competencies resulted in two 
research questions.  Will clinical faculty observations demonstrate that the performance of RM2 trained 
students exceeded students trained previously via our traditional curriculum?  This research question 
involved three areas of inquiry: 
 

a) Overall level of clinical competence achieved  
b) Diagnostic capabilities 
c) Level of explanatory capabilities achieved (the ability to use basic and clinical sciences concepts 

and principles to explain clinical phenonema). 
 

Our second research question attempted to determine if the development of clinically relevant diagnostic 
competencies begins with information acquisition, followed by comprehension based capabilities, 
followed by an ability to successfully apply their evolving knowledge base.  Will student responses 
provide evidence of a sequential ordered instructional change in clinical competencies? 
 

Results 
 For the nine (9) clinical faculty responses, a 3 X 2 chi-square analysis was performed for all three 
questions posed to faculty. For level of clinical competence achieved, 78% of faculty reported that the 
RM2 trained students overall level of clinical competence exceeded expectations, which was statistically 
significant (χ 2 = 8.686, df = 2, p = 0.013). For diagnostic capabilities, 67% of faculty reported that the 
RM2 students diagnostic capabilities exceeded expectations, which was statistically significant (χ2 = 
5.992, df = 2, p = 0.050). For level of explanatory capabilities achieved, 75% of responding faculty 
reported that the ability of RM2 students to explain phenomena via use of constructs from basic and 
clinical sciences exceeded expectations, which was statistically significant (χ 2 = 7.014, df = 2, p = 0.030).  
An effect size was computed to measure the degree of departure from the null hypothesis in standard 
units.  The effect size (r) = 0.257 and Cohen’s d = 0.532 (unbiased), which indicated a medium effect size 
(Schumacker & Akers, 2001).  
 For the one hundred nine student responses (n = 109) to the questionnaire items in Table 1, there were 
16 missing data points out of 2,180 (109 subjects x 18 variables) representing .007 percent missing data. 
Missing values were replaced with a 0 (zero) so that the summative scores for the independent variables 
would not be influenced by mean substitution or replacement by a raw score scale value of 3 (neutral) 
giving more importance to a neutral item response.  
 Three sequential ordered independent variables were then created by summing the respective 
questionnaire items. Student questionnaire items 1, 2, 3, 4, 5, 6, 7, 8 were summed to represent 
information acquisition oriented instructional activities (Acquisition); items 9, 10, 11, 12 were summed to 
represent comprehension oriented instructional activities (Comprehension); and items 13, 14, 15, 16, 17  
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Table 1.  Sequential Ordered Sets of Questionnaire Items  
Course Component Questionnaire Items 
Information 
Acquisition 

#1: The printed objectives for Pathology’s respiratory and ENT reading assignments 
were sufficiently detailed to help me focus on the most important concepts. 
#2: The printed objectives set forward for Pathology’s respiratory and ENT chapters 
enhanced my performance on examinations covering these chapters. 
#3: I understood most of the concepts contained within Nelson's textbook on my own 
with little need for clarification from an instructor. 
#4: The printed objectives for Pediatric's respiratory and ENT reading assignments 
were sufficiently detailed to help me focus on the most important concepts. 
#5: The printed objectives set forward for Pediatric's chapters enhanced my 
performance on examinations covering these chapters. 
#6: I understood most of the concepts contained within Internal Medicine’s textbook 
on my own with little need for classroom sessions. 
#7: The printed objectives for Internal Medicine’s respiratory reading assignments 
were sufficiently detailed to help me focus on the most important concepts. 
#8: The printed objectives set forward for Internal Medicine’s reading assignments 
enhanced my performance on examinations covering these chapters. 

Comprehension #9: Interactive class sessions enhanced my understanding of the self study materials. 
#10: Interactive sessions following, and keyed to prior self study of a required reading 
assignments) should be adopted by other System Two course faculty. 
#11: KBIT's WEB-based 'training' cases (cases that did not require a diagnosis) helped 
me better understand the variety of ways patients with a given disease could present in 
the clinical arena. 
#12: The type of knowledge placed within an 'explanatory' knowledge base is related 
to but organized in a different format from 'diagnostic' knowledge. 

Application #13: Following a wrong diagnosis, KBIT's case-specific 'feedback' enhanced my 
understanding of how signs and symptoms could have been better used to correctly 
diagnose the case. 
#14: Spending an hour or more focusing on a specific clinical problem (during 
application sessions) improved my understanding of how to initiate my approach to 
cases presenting with that particular clinical problem. 
#15: Compared with traditional lectures, the application sessions provided a greater 
opportunity for me to integrate textbook and lecture derived knowledge about clinical 
problems and their disease differentials 
#16: The application sessions enhanced my evolving patient care management 
capabilities. 
#17: Application session cases and questions engaged me and challenged me in ways 
different than traditional course examinations. 

Dependent 
Variable 

#18: My overall level of clinical competence (i.e., diagnostic capabilities, clinical 
skills, treatment skills, patient care management skills) improved in Respiratory 
Medicine Two (RM2). 

 

were summed to represent application oriented instructional activities (Application). These three 
sequential ordered variables were used to test the sequential relationship developed for the three core 
instructional methods used in RM2 (Acquisition, Comprehension, Application) as related to the 
dependent outcome variable (improved clinical competencies, item 18).  
 Table 2 indicates the variable scale statistics including Cronbach internal consistency reliability 
coefficients for the three independent variables. 
 Table 3 indicates the correlation amongst the variables in the path model. The correlation between 
Acquisition and Application was the only non-significant correlation coefficient. In a manner consistent 
with Bloom’s taxonomy, the students’ sense of their improved clinical competencies (Y) indicated 
increased correlation values across the sequential ordered variables (r = 0.176 to 0.388 to 0.547).   
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Table 2.  Variable Descriptive Statistics  (N = 109) 

Variable Items Mean SD Reliability 
Acquisition 8 21.06 5.14 .786 
Comprehension 4 8.62 2.94 .606 
Application 5 12.61 4.770 .839 
Y  1 2.64 1.03 n/a 
 
Table 3.  Correlation Matrix (N = 109) 
Variable Y Acquisition Comprehension Application 
Y          1.000    
Acquisition         0.176*           1.000   
Comprehension         0.388**           0.430**           1.000  
Application         0.547**           0.075           0.568** 1.000 
* p < 0.05, df = 108 (one-tail test); ** p < 0.01, df = 108 (one-tail test) 
 
 A path model analysis using structural equation modeling software (LISREL) statistically tested the 
research question:  Will student responses provide evidence of improvements in clinical competencies 
due to sequentially ordered instruction? The path model was diagrammed as: 
 
 
 
 
 
 
The correlation matrix is in Table 3. The sequential ordered variables yielded statistically significant path 
coefficients and R-squared values.  The path model chi-square value was non-significant at the p < .01 
level of significance indicating that the data fit the hypothesized theoretical path model (χ2 = 8.79, df = 3, 
p =0.03). The overall R2 value for this path model, which included direct and indirect effects, was R2

m = 
0.615. Findings therefore indicated that 62 percent of the variation in Y (improved clinical competencies) 
was explained by the sequential nature of the independent variables direct and indirect effects. 
 

Conclusions 
 The curricular reform initiative represented in this study was research designed to improve the 
clinical capabilities and competencies of medical students. The authors believed that a learning sciences 
framework utilizing hierarchically ordered instructional sequencing (information acquisition, followed by 
comprehension, followed by application activities) could improve the clinically relevant competencies of 
sophomore medical students.  Faculty observations provided evidence of performance improvements in 
the students’ overall clinical capabilities and more specifically in their diagnostic and explanatory 
capabilties. Student feedback also validated the underlying learning sciences framework used in the 
design of the RM2 course and provided a cognitively based explanation as to why the students overall 
clinical competencies improved.   
 The path analysis results supported the research question, that is, intellectual development 
(intellectual processes and knowledge based capabilities) evolved in a logical progression as indicated by 
a statistically significant sequential ordering of the independent variables: Acquisition, Comprehension, 
and Application. The path analysis results therefore suggest that hierarchically ordered instruction 
represents useful means of supporting the evolving nature of the intellectual processes and knowledge 
based capabilities of medical students. 
   Efforts intended to champion curricular reform initiatives require a well planned, multi-faceted 
approach to evaluating the outcomes of the proposed instructional interventions (Hardin, Grant, Buckley, 
& Hart, 1999; Wilkes & Bligh, 1999;  Norman, Eva, & Schmidt, 2005; Mamede, Schmidt, & Norman, 
2006). Without such an approach, it is unlikely that curricular innovators will be able to provide evidence 
sufficient to argue that their particular instructional interventions merit further consideration, refinement 
and perhaps emulation. The results of this study provided evidence that a larger scale implementation of 
our sequential ordered instruction could yield positive performance improvements throughout coursework 

Improved 
Clinical 

Competency 

 
Acquisition 

 
Comprehension 

 
Application 



Instructional Activities 
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representing the entire second year of the curriculum.  A recent investigation involving the use of 
hierarchically ordered instructional sequencing (and other learning sciences principles) across our year 
two curriculum (called an Application-Oriented Curriculum) has provided evidence of significant 
improvement of students on national Licensing Board examinations (Papa et al., in review). 
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