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Researchers learn that the Scheffé (1953) MCP lacks power because it adjusts for all possible 

comparisons—consequently, few use it. However, only Scheffé guarantees congruence: finding a 
significant comparison when the omnibus ANOVA is significant—and not finding one when ANOVA is 

nonsignificant (Maxwell et al., 2018). A maximum Scheffé comparison can be calculated to provide the set 

of coefficients that maximally differentiates some combination of groups on the dependent variable (Keppel 
& Wickens, 2004; Williams, 1978). Unfortunately, coefficient weights from this maximum comparison are 

often uninterpretable. Therefore, we have developed a Shiny app to identify maximum and other 

Barcikowski “human-friendly” comparisons that may actually be meaningful. We used Monte Carlo 
simulations to investigate robustness, power, and congruence (Kirk, 2013) of these human-friendly 

comparisons and the relatively unknown Brown-Forsythe unequal-variance adjustment to Scheffé. We 

report results regarding Bonferroni-adjusted normality tests and zero-adjusted Levene homoscedasticity 

tests for assumptions in ANOVA. 

 ost applied researchers are familiar with multiple comparison procedures (MCPs) used to explore 
group mean comparisons following a statistically significant one-way analysis of variance 

(ANOVA) or main effect in factorial ANOVA. Commonly used MCPs include pairwise 

comparison techniques like Tukey-Kramer and Games-Howell. One of the oldest MCPs is attributed to 

Scheffé (1953) but relatively few researchers use it, however, because it is well-known to lack the statistical 
power of other MCPs for the pairwise post hoc comparisons that most researchers use (and that most 

statistics programs provide) following a statistically significant ANOVA. That is, because Scheffé adjusts 

for all possible comparisons (i.e., all pairwise and non-pairwise—or complex—comparisons), it has lower 
statistical power relative to techniques that only adjust alpha for pairwise comparisons.  

  It is noteworthy that Scheffé provides the opportunity to test many complex contrasts or comparisons 

with appropriate alpha adjustment for as many tests as desired. But more noteworthy is that only Scheffé 
guarantees congruence to find a statistically significant comparison (which is typically a complex 

comparison) whenever the omnibus or main-effect ANOVA is statistically significant (Kirk, 2013)—and 

conversely, not find one when ANOVA is not significant (Maxwell et al., 2018). That is, a Scheffé 

comparison can be calculated that provides contrast coefficients for the means that maximally separate 
some combination of the groups (Keppel & Wickens, 2004; Williams, 1978) with the same resulting 

significance p-value as the omnibus Fisher F ANOVA—and, therefore, the same Type I error and statistical 

power rates, as well. We believe researchers may be missing potentially useful exploratory information by 
not examining this maximum comparison. Unfortunately, none of the well-known statistical programs 

calculate it. One of our purposes here is to share an online R Shiny app that provides this comparison 

along with others that may be of interest to researchers (link below). 
                                                    (https://72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/) 

  Unfortunately, this maximum Scheffé comparison may be uninterpretable. Therefore, Barcikowski 

(personal communication, 2000) suggested a method by which researchers can identify a maximum 
“human-friendly” comparison that serves to approximate the Scheffé maximum comparison with 

coefficients that are reasonably interpretable. We have also implemented in the R Shiny app a method to 

identify this maximum human-friendly comparison as well as others that may be meaningful to and 
interpretable by a human researcher. We have named these “Barcikowski human-friendly comparisons” in 

memory of Robert Barcikowski, who introduced the idea to the authors and whose original FORTRAN 

code has been adapted into R (with permission). 

  The purposes of this research were (1) to create and share an online app that finds the Scheffé maximum 

comparison, as well as the easier-to-calculate “normalized maximum posttest contrast” described by 

Hollingsworth (1978) and the maximum Barcikowski human-friendly comparisons, (2) to test the 

M 
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comparisons statistically with both Scheffé’s F-test and Brown-Forsythe’s adjustment to Scheffé for 
unequal variances, and (3) to perform Monte Carlo simulations that test the comparative robustness (Type 

I error rates), statistical power, and, especially, congruence of these methods. 
 

Background 

  Applied researchers commonly compare group means for both experimental and nonexperimental 

purposes. While there are other approaches, a common method put forward by textbooks is to perform a 
one-way ANOVA and its obligatory assumptions tests, and then, if that omnibus ANOVA is statistically 

significant, to follow up with an appropriate post hoc MCP (but it is noted that many of the MCPs, including 

Scheffé, can also be used directly without protection from a significant ANOVA). Using a post hoc MCP 
allows researchers to investigate which particular group means may differ based on the significant ANOVA, 

which simply suggests that some combination of the population means differs. The most common 

implementation of MCPs is via pairwise approaches, where each group mean is compared to each of the 

other group means (sometimes all possible pairwise comparisons, sometimes a subset—for example each 
treatment group only compared to a control group). Levels of significance or p-values are adjusted through 

most of the MCP techniques to control familywise error rate. Statistics computer programs typically offer 

many such pairwise MCPs, most for equal variances (e.g., Tukey-Kramer) and some not (e.g., Games-
Howell). 

  For example, the set of six pairwise comparisons used to compare all possible paired two-group 

pairwise comparisons from among four groups would look like this: 
 

ψ1 = 1µ1  + (−1)µ2 + 0µ3 + 0µ4 

ψ2 = 1µ1  +  0µ2  + (−1)µ3 + 0µ4 

ψ3 = 1µ1  +  0µ2  + 0µ3 + (−1)µ4 
ψ4 = 0µ1  + 1µ2 + (−1)µ3 + 0µ4 

ψ5 = 0µ1  + 1µ2  + 0µ3 + (−1)µ4 

ψ6 = 0µ1  + 0µ2  + 1µ3 + (−1)µ4 
 

These coefficient weights (for example, [1 −1 0 0] for ψ1) would be used to calculate mean differences 
between group 1 and group 2, because group 3 and group 4 coefficients are zero and therefore not included 

in the comparison. Similarly, the coefficients for ψ4, [0 1 −1 0], would be used to compare mean differences 

between group 2 and group 3. The groups with zero coefficients are always excluded from the calculation 

of comparisons. 
  However, complex, non-pairwise comparisons would include coefficients to calculate comparisons 

using combinations of multiple groups (essentially as comparisons between “positive” and “negative” 

coefficient groups, similar to the way +1 and −1 divide two groups into positive and negative groups in the 
pairwise comparisons). For example, the set of three Helmert contrasts for four groups would include two 

complex comparisons (ψ7 and ψ8): 
 

ψ7 =  1µ1  + (−⅓)µ2 + (−⅓)µ3 + (−⅓)µ4 

ψ8 =  0µ1  + 1µ2  + (−½)µ3 + (−½)µ4 
ψ9 =  0µ1  + 0µ2  + 1µ3 + (−1)µ4 

 

  But this set of Helmert contrasts does not constitute all possible Helmert-type comparisons. If Helmert-

type comparisons are being used post hoc, there may be no a priori reference groups (e.g., group 1 in ψ7 

above or group 2 in ψ8 above). For example, from an exploratory post hoc perspective, a researcher may 
also want to look for any such Helmert-type comparison that is informative, such as these, where group 2 

is beginning reference group as group 1 was in ψ7: 
 

ψ10 =  (−⅓)µ1  + 1µ2 + (−⅓)µ3 + (−⅓)µ4 

ψ11 =  (−½)µ1  + 0µ2  + (−½)µ3 + 1µ4 
ψ12 =  (−1)µ1  + 0µ2  + 1µ3 + 0µ4 

 

  Similarly, group 3 could be 1 in ψ11 while group 4 has a coefficient of (−½); or group 3 could be the 

beginning reference group, and so forth. As might become quickly obvious, there would be many 

combinations of complex non-pairwise coefficients. The critical feature is that the positive and negative 
combinations each sum to the same value, typically 1.0 (additional requirements are required for sets of 

orthogonal contrasts). For example,  
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ψ13 = 1µ1  + (−½)µ2 + (−¼)µ3 + (−¼)µ4 
ψ14 = ½µ1  + ½µ2  + (−½)µ3 + (−½)µ4 

ψ15 = 0.2µ1  + 0.8µ2  + (−0.2)µ3 + (−0.7)µ4 
 

  It is argued by some that complex comparisons are not useful (e.g., Schmid, 1977). For example, 

comparisons like ψ15 above may be difficult for a researcher to interpret. While many of the possible 
complex comparisons may be uninterpretable, sometimes such comparisons are worth examining. For 

example, the first Helmert-style complex comparison described above, ψ7, might describe a comparison of 

a control (group 1) with the average of three treatment groups (e.g., “nothing” versus “something”). 

Similarly, the second complex comparison, ψ8, may refer to a comparison—after dropping a placebo 
group—between a low-dose group (level 2) and the average of the two higher dose groups, levels 3 and 4 

(e.g., “some” versus “more”). In a study with two comparison and two control groups, contrast ψ14 above 

might be useful from the perspective of the average of control groups versus the average of treatment 
groups. 

  Many methodological scholars have studied robustness and power of MCPs. Scheffé often fares poorly 

because of its extreme adjustment to control Type I error for all comparisons, which results in lower 
statistical power than other procedures—especially when used only with pairwise comparisons. Scheffé 

also is not robust to violations of the homoscedasticity assumption.  

  Scheffé is unique among MCPs because it allows and adjusts for infinite possible pairwise and complex 

comparisons. Textbooks often describe the procedure probably because it allows for all possible 
comparisons—but do not usually recommend it for practice due to power and because pairwise comparisons 

are often preferred (for interpretability). Scheffé can be useful when researchers begin with research 

questions that imply multiple a priori complex contrasts and they want to be conservative and control Type 
I error inflation for multiple tests. It is also useful when researchers have no theoretical expectations for the 

relationships between groups and wish to explore all differences among them, including complex 

differences. 
 

Scheffé Maximum Comparison 

 The Scheffé maximum comparison (which we will call SchefféMax), for both equal and unequal 

sample sizes, is found using the formula (Keppel & Wickens, 2004; Williams, 1979): 

𝑐𝑖
′ =

𝑁𝑖(𝑋̅𝑖 −  𝑇̅)

√𝑆𝑆𝐵
 

where ci is the comparison coefficient for group/level i, Ni is the sample size in for group/level i, 𝑇̅ is the 

dependent variable grand mean (total) for the entire sample, 𝑋̅𝑖 is the dependent variable mean for 

group/level i, and SSB is the sum of squares between groups from ANOVA. For example, for example data 

where Ni = 10 for all groups, 𝑇̅ = 49.3, SSB = 698.4, and the group means, 𝑋̅𝑖, are 54.9, 45.9, 51.7, and 
44.7, the maximum comparison coefficients, ci, for the four groups in this example are calculated as follows: 
 

        c1 = 10(54.9−49.3) / 26.43 =   56 / 26.43 =   2.119 

        c2 = 10(45.9−49.3) / 26.43 = −34 / 26.43 = −1.286 

        c3 = 10(51.7−49.3) / 26.43 =   24 / 26.43 =    0.908 
        c4 = 10(44.7−49.3) / 26.43 = −46 / 26.43 = −1.742 
 

  From one perspective, SchefféMax has the same statistical power as the ANOVA F test. That is, we 

know that SchefféMax will always be congruent with ANOVA. As a result, both the Type I error rate and 

the statistical power for SchefféMax will be the same as those of the Fisher F-statistic, guaranteeing a 
significant comparison with a significant ANOVA—which other MCPs cannot. 
 

Hollingsworth Maximum Comparison 

  Hollingsworth (1978; also see Williams, 1979) proposed the following formula for the contrast, which 

we will call HollingsworthMax:  

𝑐𝑖 =
√𝑁̃(𝑋̅𝑖 − 𝑇̅)

√𝑆𝑆𝐵
 

where 𝑁̃ is the harmonic mean (which equals Nper group when all Ni are the same). Hollingsworth also showed 

that the comparison Sum of Squares Between (SSBi) can be calculated as: 
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𝑆𝑆𝐵𝑖 =
𝑁(∑ 𝑐𝑖𝑋̅𝑖

𝑘
𝑖=1 )

2

∑ 𝑐𝑖
2  

where k is the total number of levels. Further the proportion of between group variation that can be attributed 

to each comparison can be calculated as follows, which is simply ci
2: 

𝑐𝑖
2 =

(𝑋̅𝑖 − 𝑇̅)2

∑ (𝑋̅𝑖 − 𝑇̅)2𝑘
𝑖=1

 

where the symbols are used the same as above. In the example above, HollingsworthMax results in the 

same comparison coefficients as SchefféMax because the group sizes are all equal. 
 

Barcikowski Human-Friendly Comparisons 

  If researchers have the time available, they can create an infinite number of non-pairwise comparisons, 

most of which would be meaningless from a practical or theoretical perspective. The core idea of the 

Barcikowski comparisons is to identify sets of potential comparisons that are reasonably interpretable. 

Barcikowski comparisons might be described as “Helmert-plus” comparisons. That is, Barcikowski 
comparisons constitute all possible Helmert-type comparisons plus other “reasonable” ways to compare 

complex combinations of groups. For example, with five groups the first set of Helmert-type comparisons 

might be [−1 ¼ ¼ ¼ ¼], [0 −1 ⅓ ⅓ ⅓], [0 0 −1 ½ ½], and [0 0 0 −1 1]. However, the process then creates 
all other sets of possible Helmert comparisons with a different beginning reference group each time. For 

example, another set of comparisons would be:  

       [¼ −1 ¼ ¼ ¼], [⅓ 0 −1 ⅓ ⅓], [½ 0 0 −1 ½], and [1 0 0 0 −1].  
  After creating the Helmert-type comparisons, additional sets of reasonable comparisons are created that 

do not follow the Helmert pattern. For example, with five groups such comparisons might include 

comparing the first two groups to the other three (i.e., [½ ½ −⅓ −⅓ −⅓]), or maybe comparing two groups 

to two groups while leaving one out of the comparison (i.e., [½ ½ 0 −½ −½]). The former comparison might 
imply two particular follow-up comparisons, both of which would fall under the Helmert-type designation: 

[1 −1 0 0 0] and [0 0 1 −½ −½], the latter of which then might be followed by the pairwise comparison 

between groups 4 and 5. Table 1 provides examples of the patterns used for the comparison coefficients for 
eight groups. In total there are 3025 unique sets of coefficients obtained and tested for the eight-group 

scenario, which are all permutations of the 16 examples in Table 1. There are 6 unique sets of coefficients 

for three groups, 25 for four groups, 90 for five groups, 301 for six groups, and 966 sets of coefficients for 
seven groups. Unfortunately, beyond eight groups the number of sets of coefficients requires extensive 

computing time. 
 

Table 1. Example Barcikowski Comparison Coefficients for Eight Levels/Groups 

 Comparison Coefficients for Each Group 

Comparison 1 2 3 4 5 6 7 8 

  1 ¼   ¼   ¼   ¼ −¼ −¼ −¼ −¼ 

  2 ⅓   ⅓   ⅓ −⅕ −⅕ −⅕ −⅕ −⅕ 

  3 ⅓   ⅓   ⅓   0 −¼ −¼ −¼ −¼ 

  4 ⅓   ⅓   ⅓   0   0 −⅓ −⅓ −⅓ 

  5 ½   ½ −⅙ −⅙ −⅙ −⅙ −⅙ −⅙ 

  6 ½   ½   0 −⅕ −⅕ −⅕ −⅕ −⅕ 

  7 ½   ½   0   0 −¼ −¼ −¼ −¼ 

  8 ½   ½   0   0   0 −⅓ −⅓ −⅓ 

  9 ½   ½   0   0   0   0 −½ −½ 

10 1 −⅐ −⅐ −⅐ −⅐ −⅐ −⅐ −⅐ 

11 1   0 −⅙ −⅙ −⅙ −⅙ −⅙ −⅙ 

12 1   0   0 −⅕ −⅕ −⅕ −⅕ −⅕ 

13 1   0   0   0 −¼ −¼ −¼ −¼ 

14 1   0   0   0   0 −⅓ −⅓ −⅓ 

15 1   0   0   0   0   0 −½ −½ 

16 1   0   0   0   0   0   0 −1 

    



Human-Friendly Multiple Comparisons 

General Linear Model Journal, 2024, Vol. 48(1)                                                                                                         15 

  Therefore, we use Helmert-type comparisons and those additional reasonable comparisons that 
maintain relatively interpretable fractions for the coefficients. This process results in a subset of all possible 

Scheffé-like comparisons that have the most reasonable potential for interpretation. From an exploratory 

perspective, the emphasis of the Barcikowski comparisons is to test the maximum plus all possible 

reasonable comparisons. Ultimately, the researcher will need to determine whether any of the statistically 
significant maximum comparisons make sense. The maximum Barcikowski comparison (which we call 

BarcikowskiMax) and other next-most informative comparisons are identified by testing all these Helmert-

plus comparisons and then sorting the comparisons according to explanatory power (i.e., proportion of 
between sums of squares explained for each comparison). 
 

Methods 

  We created R code that identifies the SchefféMax comparison and analyzes the comparisons for an 

applied researcher’s dataset. This R code is available for use by applied researchers in the R Shiny app 

created by the authors (https://72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/). The code 

also identifies the HollingsworthMax comparison, which typically differs slightly from SchefféMax in 
unbalanced designs. Finally, we have also implemented a method to identify the BarcikowskiMax 

comparison and, because there can be multiple statistically significant Barcikowski comparisons, the most 

informative Barcikowski comparisons (i.e., a particular subset of all possible Scheffé comparisons). This 
allows review of multiple exploratory comparisons, the R Shiny app reports all Barcikowski comparisons 

that were statistically significant at α=0.15, sorted by the comparisons’ sums of squares between. 
 

Study Design 

  This study used Monte Carlo simulation methods in R to generate and analyze data for many conditions. 

We ran the simulations in two phases. In Phase 1, we generated 100,000 samples across 27 four-group 

robustness conditions and 6 statistical power conditions. In Phase 2, we sought to extend the results of 

Phase 1 with five groups. In this phase, we generated 10,000 samples for 49 five-group robustness 
conditions and 8 statistical power conditions. 

  Congruence. All conditions were used to investigate the congruence of the three maximum methods 

with the statistical significance of the omnibus Fisher F ANOVA. However, the primary purpose was to 
determine how congruent BarcikowskiMax is. We also investigated the congruence for the four most 

informative comparisons by examining how often those Barcikowski comparisons resulted in the same 

decision about the null hypothesis as the Fisher F (i.e., not the same p-value). 

  Robustness. We also investigated the robustness (i.e., control of Type I error, especially under 
violations of assumptions) of these maximum comparisons across the many conditions. We compared 

HollingsworthMax and the four most informative BarcikowskiMax comparisons with the SchefféMax 

comparison. Most importantly, we investigated the robustness of the Brown-Forsythe adjustment to the 
Scheffé MCP significance test. We defined robustness using Bradley’s (1978) stringent α ± (0.1×α) 

criterion (i.e., considered robust if actual alpha remains within 0.045-0.055 when nominal α = 0.05). 

  The conditions we used to investigate robustness of Type I error rates were not exhaustive and were 
not fully crossed but were designed to cover a variety of circumstances researchers may face. The conditions 

designed to study Type I error rates varied the following: group sizes (balanced and unbalanced), variances 

(equal and unequal), and distributional shapes (normal, negatively skewed, and platykurtic). All means 

were set equal to 50 for these robustness conditions. Three distributional shapes were used with each of the 
group size and variance conditions. In all, we investigated nine conditions for each distributional shape for 

a total of 27 conditions. 

  Balanced group sizes in Phase 1 were all set to 40. Several patterns of sample sizes were used for 
unbalanced conditions: increasing sample sizes from group 1 to group 4 (i.e., 28, 36, 44, 52), two pairs of 

groups with equal sample sizes (i.e., 30, 30, 50, 50), and three groups with equal sample sizes (i.e., 36, 36, 

36, 52). Similar patterns were used in Phase 2: (a) all samples with size of 40; (b) sample sizes of 20, 30, 

40, 50, 60; (c) sample sizes of 30, 35, 40, 45, 50; (d) sample sizes of 30, 30, 40, 50, 50; (e) sample sizes of 
36, 36, 36, 46, 46; (f) sample sizes of 35, 35, 35, 35, 60; and (g) sample sizes of 28, 43, 43, 43, 43. 

  Equal variance conditions in Phase 1 were all set to standard deviations of 10. Several patterns of 

standard deviations were used for the unequal variance conditions: decreasing standard deviations from 
group 1 to group 4 (i.e., 13, 11, 9, 7), increasing standard deviations from group 1 to group 4 (i.e., 7, 9, 11, 

13), two pairs of groups with equal standard deviations (i.e., 12, 12, 8, 8), and three groups with equal 

https://72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/
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standard deviations (i.e., 11, 11, 11, 7). Similar patterns were used in Phase 2: (a) all standard deviations 
set equal to 10; (b) standard deviations set to 14, 12, 10, 8, 6; (c) standard deviations set to 12, 11, 10, 9, 8; 

(d) standard deviations set to 12, 12, 10, 8, 8; (e) standard deviations set to 12, 12, 10, 10, 6; (f) standard 

deviations set to 13, 13, 8, 8, 8; and (g) standard deviations set to 11, 11, 11, 11, 6. 

  Statistical Power. To investigate statistical power, we varied the means but primarily maintained equal 
sample sizes (N = 40) and equal variances (i.e., SD = 10). In both the four-group Phase 1 and the five-group 

Phase 2, we used standardized mean difference effect sizes (Cohen’s d) of 0.4 and 0.8 as the consistent 

mean differences among groups. In Phase 1, we reported results for the following mean vectors across the 
four groups: [50, 50, 50, 54], [50, 50, 50, 58], [50, 50, 54, 54], [50, 50, 54, 58], [50, 50, 58, 58], and [50, 

54, 54, 58]. These patterns of means cover most, if not all, the possible patterns of 0.4 and 0.8 standardized 

mean differences among groups. It should be noted that in Phase 1 we also report results for one pattern of 
means where sample sizes were unequal, but variances were equal and also one condition where variances 

were unequal, but sample sizes were equal (these two conditions should be relatively robust in Type I error 

and therefore safe to examine for statistical power). In Phase 2, we used similar patterns of means: [50, 50, 

50, 50, 54], [50, 50, 50, 50, 58], [50, 50, 50, 54, 54], [50, 50, 50, 54, 58], [50, 50, 50, 58, 58], [50, 50, 54, 
54, 58], [50, 50, 54, 58, 58], and [50, 54, 54, 54, 58]. 
 

Data Generation and Analysis 

  In each condition, data were generated for each sample from the population conditions described above. 

For all distributions used in Phase 1, we investigated conditions with (a) equal sample sizes and equal 
variances, (b) equal sample sizes and unequal variances, (b) unequal sample sizes and equal variances, (b) 

unequal sample sizes and unequal variances (both the known liberal condition of larger groups having 

smaller variances and the conservative condition where smaller groups have smaller variances). For 

distributional shapes, normally distributed data were generated N(0,1) and transformed. A population of 

one million cases was created with known means and standard deviations (described above) for skewed 
data using the Beta(2,5) distribution and for platykurtic data using a uniform distribution. Phase 2 was 

essentially the same but did not include the conservative Type I error conditions (smaller samples with 

smaller variances) and only normal data were generated for Phase 2. 

  In each sample, we tested the assumption of normality using a variety of tests, including a conditional 
Bonferroni-adjusted Shapiro-Wilk, Pearson test of residuals, and several others (details in results). We 

tested the assumption of homoscedasticity (a.k.a., homogeneity of variances) using multiple versions of 

Levene’s test, Breusch-Pagan, and Fligner (details in results). We calculated the omnibus ANOVA using 
Fisher’s F, Welch’s F, and Brown-Forsythe F (both unconditionally and conditionally based on 

homoscedasticity and normality assumption tests). For the one-way ANOVA analyses and the tests of 

assumptions, we used both Base R functions and several packages available for the tests (e.g., car, 

lawstat, DescTools, jmv, lmtest, nortest, onewaytests, rosetta).  

  We calculated SchefféMax and HollingsworthMax comparisons and tested their statistical significance 

using our own code. The Barcikowski comparisons were also calculated and tested using our own code and 
sorted according to explanatory power (i.e., proportion of between sums of squares explained). The four 

most informative Barcikowski comparisons were used for analyses. Finally, we also performed the 

relatively uncommon Brown-Forsythe adjustment to the Scheffé MCP F-test (Kirk, 2013) for all conditions. 
Like the omnibus ANOVAs, we also performed the MCPs both unconditionally and conditionally on a test 

of homoscedasticity. 

  Across all samples within a condition, rejections of tests were counted either for Type I errors or 

statistical power, as appropriate. We collected the rejection results from each sample for the omnibus tests, 
the assumptions tests, and the post hoc group comparisons. These results were then used to calculate Type 

I error rates or statistical power for each method in each condition. We used .05 as our nominal alpha for 

all tests, and as the familywise alpha for Bonferroni adjustments. 
  Code Verification. All code was tested for accuracy before final simulations were run. Where possible 

we used multiple Base R functions and R packages to cross-verify results. We verified the code for 

SchefféMax, HollingsworthMax, Barcikowski comparisons, and the Brown-Forsythe test ourselves 
because we could not find existing R functions or other programs that produced these results. Some Monte 

Carlo simulations were run multiple times with different seeds to verify that the results were not artifacts 

of poor seed choice. We ran simulations for conditions with known results (e.g., no violations of 
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assumptions under true null hypotheses). We tested the R code with single samples and verified accurate 

counts across small numbers of multiple samples (e.g., 10 and 100). 
 

Results 

Congruence  

  The most important research question was about congruence of the maximum comparisons, especially 
for the new Barcikowski human-friendly comparisons (i.e., how often they agree with the omnibus 

ANOVA). Not surprisingly, however, we found empirically that both Type I error and statistical power are 

the same for SchefféMax and the omnibus Fisher F-test—also for HollingsworthMax with balanced group 

sizes. Table 2 and Figures 1-2 show that, as expected, 100% of the samples in all conditions resulted in the 
same rejection decision for the omnibus ANOVA F-statistic and the SchefféMax comparisons (99% for the 

HollingsworthMax comparisons). The maximum Barcikowski human-friendly comparison agreed with 

ANOVA in 98.8% of the samples across all four-group robustness conditions (over 96% of all five-group 
conditions)—also strongly congruent. Notably, the next three most explanatory Barcikowski comparisons 

also agreed with the omnibus F-test decision in at least 95.5% of the four-group robustness conditions (over 

94% of all five-group conditions)—still strongly congruent.  
  Perhaps more interestingly, in the six four-group power conditions tabled, the BarcikowskiMax 

comparisons agreed with the omnibus F-test in at least 96.7% of the samples across power conditions (over 

93% of all five-group conditions), and the fourth most explanatory Barcikowski comparisons still agreed 

at a rate of at least 82.3% across the four-group power conditions (over 77% of all five-group conditions). 
Generally, in both four and five groups, the top four Barcikowski comparisons had more congruence with 

higher-power conditions (e.g., when the minimum effect size was Cohen’s d = 0.8) and lower congruence 

where effect sizes were smaller. 
 

Robustness 

  Tables 3 and 4 show the Type I error rates of the SchefféMax, HollingsworthMax, and BarcikowskiMax 

comparisons—using the conditional tests. That is, because we determined that the conditional tests for all 
three methods performed better and more consistently in terms of controlling Type I error (see Figures 3-

6), we report tabulated results for only the conditional tests. 

  The unconditional Scheffé (i.e., where the pooled Scheffé F is always used regardless of 
homoscedasticity) and the unconditional Brown-Forsythe (i.e., where the Brown-Forsythe test is always 

used regardless of homoscedasticity) approaches followed essentially the same relative patterns both within 

and across methods as the conditional tests for almost all conditions, so those results were essentially 
redundant to Table 3 and Table 4, and therefore not shown. 

 
Figure 1. Percentage of agreement (congruence) between comparisons (SchefféMax, HollingsworthMax, and 

four most explanatory Barcikowski Human-Friendly comparisons) and the Omnibus F-test for statistical power 

conditions (unequal means) for four groups and only equal variances and equal sample sizes. 
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Figure 2. Percentage of agreement (congruence) between comparisons (SchefféMax, HollingsworthMax, and 

four most explanatory Barcikowski Human-Friendly comparisons) and the Omnibus F-test for statistical power 

conditions (unequal means) for five groups and only equal variances and equal sample sizes 
 

Table 2. Percentage of agreement (congruence) between unconditional comparisons (SchefféMax, 
HollingsworthMax, and the four most explanatory Barcikowski Human-Friendly comparisons) and the 

Phase 1 four-group omnibus F-test under both Type I error robustness and Power conditions 

 Percentage Agreement with Omnibus F-test rejection decision 

Type I Error 

Robustness Conditions Scheffé 

Hollings-

worth 

1st most 

explanatory 

2nd most 

explanatory 

3rd most 

explanatory 

4th most 

explanatory 

N SD Shape maximum maximum Barcikowski Barcikowski Barcikowski Barcikowski 

40,40,40,40 10,10,10,10 Normal 100.00% 100.00% 99.29% 98.13% 97.28% 96.76% 

28,36,44,52 10,10,10,10 Normal 100.00% 99.70% 99.01% 97.94% 97.13% 96.70% 

40,40,40,40 13,11,9,7 Normal 100.00% 100.00% 99.36% 98.32% 97.29% 96.74% 

28,36,44,52 13,11,9,7 Normal 100.00% 99.64% 98.82% 97.40% 96.43% 95.68% 

28,36,44,52 7,9,11,13 Normal 100.00% 99.76% 99.23% 98.35% 97.73% 97.38% 

40,40,40,40 10,10,10,10 Skewed 100.00% 100.00% 99.25% 98.03% 97.20% 96.76% 

28,36,44,52 10,10,10,10 Skewed 100.00% 99.61% 99.03% 97.95% 97.23% 96.84% 

40,40,40,40 13,11,9,7 Skewed 100.00% 100.00% 99.34% 98.03% 97.08% 96.53% 

28,36,44,52 13,11,9,7 Skewed 100.00% 99.69% 98.84% 97.53% 96.52% 95.69% 

28,36,44,52 7,9,11,13 Skewed 100.00% 99.77% 99.28% 98.52% 97.93% 97.57% 

40,40,40,40 10,10,10,10 Kurtotic 100.00% 100.00% 99.16% 98.02% 97.15% 96.72% 

28,36,44,52 10,10,10,10 Kurtotic 100.00% 99.64% 99.01% 98.02% 97.16% 96.68% 

40,40,40,40 13,11,9,7 Kurtotic 100.00% 100.00% 99.22% 98.01% 97.08% 96.52% 

28,36,44,52 13,11,9,7 Kurtotic 100.00% 99.66% 98.80% 97.36% 96.24% 95.54% 

28,36,44,52 7,9,11,13 Kurtotic 100.00% 99.74% 99.23% 98.39% 97.73% 97.30% 

Statistical Mean Structures Statistical Power (All Normally Distributed) 

Power 50, 50, 50, 54 1 100.00% 100.00% 97.52% 93.31% 89.11% 86.31% 

Conditions 50, 50, 50, 58 1 100.00% 100.00% 98.98% 96.62% 93.66% 91.25% 

 50, 50, 54, 54 1 100.00% 100.00% 96.95% 91.03% 85.59% 82.32% 

 50, 50, 54, 54 2 100.00% 99.11% 96.17% 90.56% 85.33% 82.35% 

 50, 50, 54, 54 3 100.00% 100.00% 96.94% 91.18% 86.32% 83.13% 

 50, 50, 54, 58 1 100.00% 100.00% 98.15% 94.37% 90.03% 86.89% 

 50, 50, 58, 58 1 100.00% 100.00% 99.24% 97.04% 94.44% 92.50% 

 50, 54, 54, 58 1 100.00% 100.00% 97.53% 92.35% 87.46% 83.61% 
1 Group sample sizes were equal (40, 40, 40, 40) and variances were equal (10, 10, 10, 10) 
2 Group sample sizes were unequal (28, 36, 44, 52) but variances were equal (10, 10, 10, 10) 
3 Group sample sizes were equal (40, 40, 40, 40) but variances were unequal (13, 11, 9, 7)  



Human-Friendly Multiple Comparisons 

General Linear Model Journal, 2024, Vol. 48(1)                                                                                                         19 

Table 3. Type I error rates for conditional Scheffé and Brown-Forsythe Adjusted Scheffé significance tests 
for maximum comparisons using α = 0.05 for all four-group tests (conditional tests performed based on 

Brown-Forsythe critical values if Levene’s test is significant, Scheffé F p-values if not) 

 Tests 

Type I Error 

Robustness Conditions Omnibus 

Conditional 

Scheffé 

Conditional 

Hollingsworth 

Conditional 

Barcikowski 

N SD Shape Fisher F Maximum Maximum Maximum 

10,10,10,10 40,40,40,40 Normal 0.05034 0.05068 0.05068 0.04241 

10,10,10,10 28,36,44,52 Normal 0.05043 0.05072 0.04736 0.04110 

10,10,10,10 40,40,40,40 Skewed 0.04954 0.04951 0.04951 0.04233 

10,10,10,10 28,36,44,52 Skewed 0.04979 0.05032 0.04698 0.04075 

10,10,10,10 40,40,40,40 Kurtotic 0.05016 0.05081 0.05081 0.04365 

10,10,10,10 28,36,44,52 Kurtotic 0.05002 0.05056 0.04695 0.04004 

13,11,9,7 40,40,40,40 Normal 0.05650 0.04185 0.04185 0.03725 

13,11,9,7 28,36,44,52 Normal 0.08372 0.04637 0.03809 0.03439 

7,9,11,13 28,36,44,52 Normal 0.03761 0.03847 0.04473 0.03897 

13,11,9,7 30,30,50,50 Normal 0.08175 0.04479 0.03696 0.03408 

13,11,9,7 36,36,36,52 Normal 0.06928 0.04392 0.03988 0.03600 

12,12,8,8 30,30,50,50 Normal 0.08237 0.05207 0.04371 0.03979 

11,11,11,7 36,36,36,52 Normal 0.06655 0.05046 0.04634 0.04076 

13,11,9,7 40,40,40,40 Skewed 0.05718 0.04382 0.04382 0.03961 

13,11,9,7 28,36,44,52 Skewed 0.08248 0.04834 0.03994 0.03752 

7,9,11,13 28,36,44,52 Skewed 0.03786 0.03936 0.04650 0.04027 

13,11,9,7 30,30,50,50 Skewed 0.08218 0.04705 0.03943 0.03626 

13,11,9,7 36,36,36,52 Skewed 0.06812 0.04513 0.04129 0.03723 

12,12,8,8 30,30,50,50 Skewed 0.08191 0.05314 0.04505 0.04071 

11,11,11,7 36,36,36,52 Skewed 0.06595 0.04933 0.04551 0.04055 

13,11,9,7 40,40,40,40 Kurtotic 0.05649 0.04252 0.04252 0.03764 

13,11,9,7 28,36,44,52 Kurtotic 0.08273 0.04610 0.03679 0.03415 

7,9,11,13 28,36,44,52 Kurtotic 0.03704 0.03957 0.04772 0.04130 

13,11,9,7 30,30,50,50 Kurtotic 0.08410 0.04720 0.03868 0.03535 

13,11,9,7 36,36,36,52 Kurtotic 0.07076 0.04485 0.04049 0.03626 

12,12,8,8 30,30,50,50 Kurtotic 0.08236 0.05111 0.04261 0.03873 

11,11,11,7 36,36,36,52 Kurtotic 0.06681 0.05083 0.04649 0.04156 
 

 In Figures 3-5 and other results not presented, SchefféMax and HollingsworthMax comparisons have 

liberal Type I error rates (i.e., over .055 based on Bradley, 1978) using the unconditional Scheffé MCP F 
test, especially in the inverse variance-size conditions (i.e., larger groups with smaller variances). Similarly, 

both were conservative (i.e., below .045) in the direct variance-size conditions (i.e., smaller groups with 

smaller variances). However, with the conditional test, Type I error rates were more consistently robust 
across all conditions (typically within the .045-.055 range set as a stringent robustness criterion based on 

Bradley, 1978), including where there were violations of homoscedasticity. Barcikowski comparisons 

appeared conservative generally, but less so when using the conditional test (see Figure 6). 
  Figures 3-5 show that the Brown-Forsythe adjusted Scheffé MCP controls Type I error when the 

homoscedasticity assumption is violated. These figures show that these maximum comparison tests appear 

to benefit from using a conditional test (i.e., pooled Scheffé F used when Levene’s test is nonsignificant, 

but Brown-Forsythe used when Levene is statistically significant). Note that in the most extreme inverse 
variance-sample size conditions, the Brown-Forsythe is almost always used because the preliminary 

homoscedasticity test is almost always significant. 
 

Statistical Power 

 As before, we report only the results for the conditional tests because they were the most robust for all 
the methods (statistical power really only matters for statistical tests that maintain control over Type I error).   
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Table 4. Type I error rates for conditional Scheffé and Brown-Forsythe Adjusted Scheffé significance tests for 

maximum comparisons using α = 0.05 for all five-group tests (conditional tests performed based on Brown-

Forsythe critical values if Levene’s test is significant, Scheffé F p-values if not) 

  Omnibus 

Conditional 

Scheffé 

Conditional 

Hollingsworth 

Conditional 

Barcikowski 

N SD Fisher F Maximum Maximum Maximum 

40,40,40,40,40 10,10,10,10,10 0.0486 0.0490 0.0490 0.0359 

40,40,40,40,40 14,12,10,08,06 0.0622 0.0301 0.0301 0.0236 

40,40,40,40,40 12,11,10,09,08 0.0532 0.0501 0.0501 0.0375 

40,40,40,40,40 12,12,10,10,06 0.0535 0.0368 0.0368 0.0280 

40,40,40,40,40 13,13,08,08,08 0.0609 0.0357 0.0357 0.0303 

40,40,40,40,40 11,11,11,11,06 0.0557 0.0416 0.0416 0.0330 

20,30,40,50,60 10,10,10,10,10 0.0464 0.0464 0.0350 0.0285 

20,30,40,50,60 14,12,10,08,06 0.1249 0.0323 0.0190 0.0166 

20,30,40,50,60 12,11,10,09,08 0.0840 0.0657 0.0479 0.0407 

20,30,40,50,60 12,12,10,10,06 0.0948 0.0423 0.0284 0.0245 

20,30,40,50,60 13,13,08,08,08 0.1076 0.0427 0.0282 0.0259 

20,30,40,50,60 11,11,11,11,06 0.0778 0.0426 0.0305 0.0246 

30,35,40,45,50 10,10,10,10,10 0.0499 0.0505 0.0478 0.0351 

30,35,40,45,50 14,12,10,08,06 0.0856 0.0320 0.0261 0.0222 

30,35,40,45,50 12,11,10,09,08 0.0672 0.0562 0.0492 0.0394 

30,35,40,45,50 12,12,10,10,06 0.0746 0.0383 0.0322 0.0273 

30,35,40,45,50 13,13,08,08,08 0.0867 0.0391 0.0311 0.0277 

30,35,40,45,50 11,11,11,11,06 0.0636 0.0418 0.0371 0.0288 

30,30,40,50,50 10,10,10,10,10 0.0488 0.0492 0.0453 0.0341 

30,30,40,50,50 14,12,10,08,06 0.0942 0.0337 0.0242 0.0210 

30,30,40,50,50 12,11,10,09,08 0.0643 0.0530 0.0453 0.0346 

30,30,40,50,50 12,12,10,10,06 0.0748 0.0403 0.0315 0.0274 

30,30,40,50,50 13,13,08,08,08 0.0843 0.0380 0.0290 0.0255 

30,30,40,50,50 11,11,11,11,06 0.0625 0.0423 0.0357 0.0280 

36,36,36,46,46 10,10,10,10,10 0.0526 0.0531 0.0519 0.0362 

36,36,36,46,46 14,12,10,08,06 0.0735 0.0293 0.0259 0.0217 

36,36,36,46,46 12,11,10,09,08 0.0616 0.0528 0.0503 0.0381 

36,36,36,46,46 12,12,10,10,06 0.0637 0.0367 0.0339 0.0255 

36,36,36,46,46 13,13,08,08,08 0.0722 0.0370 0.0325 0.0271 

36,36,36,46,46 11,11,11,11,06 0.0619 0.0419 0.0382 0.0308 

35,35,35,35,60 10,10,10,10,10 0.0459 0.0459 0.0437 0.0310 

35,35,35,35,60 14,12,10,08,06 0.0904 0.0344 0.0291 0.0241 

35,35,35,35,60 12,11,10,09,08 0.0695 0.0559 0.0519 0.0376 

35,35,35,35,60 12,12,10,10,06 0.0839 0.0429 0.0356 0.0289 

35,35,35,35,60 13,13,08,08,08 0.0716 0.0353 0.0309 0.0256 

35,35,35,35,60 11,11,11,11,06 0.0774 0.0390 0.0337 0.0273 

28,43,43,43,43 10,10,10,10,10 0.0498 0.0502 0.0471 0.0353 

28,43,43,43,43 14,12,10,08,06 0.0777 0.0289 0.0239 0.0198 

28,43,43,43,43 12,11,10,09,08 0.0648 0.0562 0.0494 0.0397 

28,43,43,43,43 12,12,10,10,06 0.0635 0.0409 0.0348 0.0280 

28,43,43,43,43 13,13,08,08,08 0.0675 0.0346 0.0287 0.0245 

28,43,43,43,43 11,11,11,11,06 0.0553 0.0388 0.0354 0.0296 
 

  Table 5 shows that, for both four groups and five groups, SchefféMax and HollingsworthMax have 
essentially the same power (exactly the same when sample sizes are equal). BarcikowskiMax is generally 

less powerful than the other two methods, but the power rates do not drop terribly dramatically. There is  

certainly a relationship between BarcikowskiMax having lower power and its being more conservative in 
terms of Type I error rates. Power did not drop dramatically for the next three most explanatory Barcikowski 

comparisons.  



Human-Friendly Multiple Comparisons 

General Linear Model Journal, 2024, Vol. 48(1)                                                                                                         21 

Supplemental Analyses 

  The primary purpose of our paper was to investigate the performance of Barcikowski human-friendly 

comparisons relative to the Scheffé maximum comparison. However, in testing the assumptions for the 

numerous conditions in Phase 1 (four groups), we identified results we have not seen reported in the 

literature regarding the performance of tests of normality and tests of homogeneity of variances in ANOVA. 
Further research must be undertaken to study additional scenarios and try to confirm and to expand the 

results for both assumptions, but we believe it is important to share these results. We only report the most 

interesting conditions for each analysis here. 
 Homoscedasticity. Most importantly, although non-normality is known not to have a substantial impact 

on the robustness of one-way ANOVA, non-normality does impact tests of homoscedasticity. Figure 7 

shows that these tests can be impacted by skewed population data, in particular. Two adaptations to Levene 
from the R lawstat package provided the most consistently robust Type I error rates in the conditions 

we tested, using Bradley’s (1978) stringent criterion. The authors of the lawstat R package (see Hui et 

al., 2008) credit Hines and Hines (2000) for the “Zero Removal” method and they cite Noguchi and Gel 
(2010) for the “Zero Correction” method (both use the median in calculations). In our study, the Zero 

Correction method performed just a little better than the Zero Removal method—and both performed just 

a little better overall than the Breusch-Pagan method (using defaults with the lmtest R package function 

bptest), which tended slightly toward inflated Type I error with skewed data, but which was most robust 

to kurtotic data. Importantly, the Levene test based on the mean showed inflated Type I error when the data 
were skewed and the Fligner and Levene-Browne-Forsythe (median) tests were generally conservative. It 

should be noted that, for the analyses in this study we used the Levene-Browne-Forsythe test, which had 

been recommended as a good choice by Gaonkar and Beasley (2023). 
 

 

Table 5. Statistical power rates for conditional Scheffé and Brown-Forsythe Adjusted Scheffé significance 

tests for maximum comparisons (SchefféMax, HollingsworthMax, and BarcikowskiMax) using α = 0.05 

for all tests (conditional tests performed based on Brown-Forsythe values if Levene’s test is significant, 
Scheffé F p-values if not) 

 

Conditional 

Scheffé 

Conditional 

Hollingsworth 

Conditional 

Barcikowski 

Means Maximum Maximum Maximum 

 Four     Groups  

50, 50, 50, 54 1 0.3174 0.3174 0.2927 

50, 50, 50, 58 1 0.8913 0.8913 0.8811 

50, 50, 54, 54 1 0.4096 0.4096 0.3802 

50, 50, 54, 54 2 0.3927 0.3840 0.3544 

50, 50, 54, 54 3 0.3713 0.3713 0.3444 

50, 50, 54, 58 1 0.8628 0.8628 0.8441 

50, 50, 58, 58 1 0.9632 0.9632 0.9555 

50, 54, 54, 58 1 0.7268 0.7268 0.7018 

 Five  Groups  

50, 50, 50, 50, 54 1 0.4024 0.4024 0.3571 

50, 50, 50, 50, 58 1 0.9613 0.9613 0.9543 

50, 50, 50, 54, 54 1 0.5732 0.5732 0.5041 

50, 50, 50, 54, 58 1 0.9619 0.9619 0.9502 

50, 50, 50, 58, 58 1 0.9969 0.9969 0.9949 

50, 50, 54, 54, 58 1 0.9367 0.9367 0.9134 

50, 50, 54, 58, 58 1 0.9900 0.9900 0.9841 

50, 54, 54, 54, 58 1 0.8234 0.8234 0.7886 
1 Group sample sizes were equal, and variances were equal 
2 Group sample sizes were unequal, but variances were equal 
3 Group sample sizes were equal, but variances were unequal 
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 Normality. For normality, we found that most tests of normality had inflated Type I error rates when 
both variances and samples sizes were unequal. There was a clear advantage for the Bonferroni-adjusted  

conditional Shapiro-Wilk tests tested in the study. That is, whenever any group has a statistically significant 

Shapiro-Wilk test using the Bonferroni alpha-adjustment for the number of groups (e.g., familywise alpha 

divided by number of groups, where adjusted α = 0.0125 with four groups), the omnibus null hypothesis of 
the normality assumption would be rejected. The Kolmogorov-Smirnov-Lilliefors (KSL) test also 

performed well using the same Bonferroni-adjusted conditional approach but was slightly more 

conservative than Shapiro-Wilk in several conditions. Figure 8 shows that the most robust test of the 
normality of the residuals was the Pearson test, which might be considered minimally acceptable based on 

its Type I error rates. The best of the rest, which were not considered acceptable under most conditions, 

was the KSL test of the normality of residuals (and note the Type I error inflation of Shapiro-Wilk with 
residuals). We could not find literature that suggested a Bonferroni-type adjustment for the conditional 

approach to test normality across groups. 

 
Figure 3. Four-group Type I error rates for Scheffé and Brown-Forsythe Adjusted Scheffé significance 

tests for maximum comparisons both unconditionally and conditional on Levene’s test of equality of 

variances (using α = 0.05 for all tests) for normal data 

 
Figure 4. Four-group Type I error rates for Scheffé and Brown-Forsythe Adjusted Scheffé significance 

tests for maximum comparisons both unconditionally and conditional on Levene’s test of equality of 

variances (using α = 0.05 for all tests) for non-normally distributed data with unequal variances  
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Figure 5. Five-group Type I error rates for Scheffé and Brown-Forsythe Adjusted Scheffé significance tests 

for maximum comparisons both unconditionally and conditional on Levene’s test of equality of variances 

(using α = 0.05 for all tests) for normally distributed data with unequal sample sizes and unequal variances 

 
Figure 6. Five-group Type I error rates for Scheffé and Brown-Forsythe Adjusted Scheffé significance tests 
for maximum comparisons both unconditionally and conditional on Levene’s test of equality of variances 

(using α = 0.05 for all tests) for normally distributed data with unequal sample sizes and equal variances 
 

 Conditional Testing. Finally, like others have found for t-tests (Delacre et al., 2017; Hayes & Cai, 

2007; Zimmerman, 2004), Figure 9 shows that the best approach for controlling Type I error inflation in a 

four-group omnibus ANOVA with unequal variances and unequal sample sizes may be to use the 
unconditional Welch F-test with no preliminary tests of assumptions (rather than the conditional approach 

based on using Welch F if homoscedasticity is violated, Fisher F if not). Using the unconditional Brown-

Forsythe F-test was just a little less robust than Welch, but still better than the conditional approach for the 
omnibus test (unlike what we found for the MCPs). 
 

Discussion 

  We have presented a method of Scheffé-style, complex, non-pairwise multiple comparisons in a new 

way, called Barcikowski “human-friendly” comparisons, that we believe can be useful to many researchers. 
We have created an R Shiny online app to calculate SchefféMax, HollingsworthMax, and the most 

explanatory Barcikowski human-friendly comparisons. The app tests these comparisons statistically with 
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both Scheffé’s MCP F-test and Brown-Forsythe’s adjustment to Scheffé for unequal variances. Practically 
speaking, for significance testing of Scheffé comparisons, there are programs already available (e.g., 

ScheffeTest in the DescTools R package) that will calculate the significance of specific Scheffé 

comparisons users send as input. The key from a post hoc perspective, however, is identifying, through a 
method like ours, which of the infinite possible comparisons to include in the input comparison matrix. 

  Some have argued that the best way to use complex comparisons may be a priori—identifying contrasts 

of interest based on theory in the research questions (e.g., Maxwell et al., 2018), perhaps without even 
performing the omnibus test or adjusting alpha. However, our experience suggests that studies often result 

in unexpected relationships and differences that can be useful to theory advancement. Having a practical 

method, provided here, by which to test the most explanatory complex comparisons can assist with this 

process. For example, the first analysis in Figure 10 results in the comparison 1 between group 1 and the 
average of groups 2 and 3 (i.e., with coefficients [1 −½ −½]) as the most explanatory comparison; however, 

the comparison between groups 1 and 2 (i.e., with coefficients [1 −1 0]) is also statistically significant (and 

likely would have been found by any pairwise MCP just as it was found significant by Scheffé). Rather 
than just being happy that groups 1 and 2 differed based on the pairwise comparison, the researcher might 

find value in learning that the [1 −½ −½] complex comparison was more explanatory than [1 −1 0] (based 

on the values of SSQ, which is the Sum of Squares Explained by the comparison). 

  Barcikowski Human-Friendly comparisons. The most explanatory Barcikowski comparisons showed 
a high level of congruence with the omnibus F-test, albeit lower than SchefféMax and HollingsworthMax. 

Results also showed that the BarcikowskiMax comparison agreed (i.e., was congruent) with ANOVA in 

over 98% of the samples across all robustness conditions. Notably, the next three most explanatory 
Barcikowski comparisons also agreed with the omnibus F-test decision in at least 95% of the robustness 

conditions in both four groups and five groups. Results suggest, however, that this agreement percentage 

may decline as the number of groups increases, and therefore additional studies with more groups should 
be undertaken. Although the Barcikowski comparisons showed less congruence in the power conditions, 

the BarcikowskiMax maintained strong congruence in most conditions (over 94% in the conditions 

studied). As the Barcikowski comparisons become less explanatory (i.e., second through fourth most 

explanatory), their congruence levels became increasingly lower—but perhaps still an acceptable level for 
the researcher. 

  Compared to SchefféMax and HollingsworthMax, the Barcikowski comparisons generally appear to be 

more conservative regarding Type I error, which also resulted in lower power than the other two methods. 
However, we found that the maximum Barcikowski human-friendly comparisons do not suffer much power 

loss compared to SchefféMax. Type I error rates for Barcikowski comparisons follow the same patterns 

regarding assumption conditions as SchefféMax. 
  Brown-Forsythe Comparisons. The General Linear Model relies on assumptions being met to provide 

accurate probabilities for its statistical tests. Although assumption violations can sometimes be ignored as 

having trivial impact on Type I errors, their violation sometimes has substantial impact. Like other General 

Linear Model statistical methods, researchers are encouraged to test assumptions, especially normality and 
homoscedasticity, as part of the analytical process for Scheffé-type comparisons of any kind. 

Based on our results, we conclude that always using robust tests (e.g., Welch) unconditionally may also be 

optimal for the omnibus test in one-way ANOVA. However, with the Scheffé-type maximum comparisons 
(and for those who prefer to verify that assumptions are met), we recommend using the Zero Correction or 

Zero Removal methods available in the R lawstat package to test homogeneity of variances. Gaonkar 

and Beasley (2023) had similarly concluded that the original correction factor adjustment on which Zero 
Correction and Zero Removal was among the better choices for the test of homoscedasticity in ANOVA. 

  We could not find any existing program that implements the Brown-Forsythe adaptation to the Scheffé 

MCP for unequal variances and we also provide those analyses as part of the Shiny app. This is noteworthy 
because Scheffé MCP requires the assumption of homoscedasticity. If researchers use our recommended 

process, it will be important to know the robustness and power results for the Brown-Forsythe adaptation. 

We found that the Brown-Forsythe adjustment for Scheffé does indeed help control Type I error rates when 

variances and sample sizes differ. Because the Scheffé MCP has not been used much in applied research, 
the consideration of an unequal-variances adaptation had not been a major concern among scholars. But 

with our new approach it will become important.  
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Figure 7. Type I error rates for preliminary tests of homogeneity of variances in four groups 

 

 
Figure 8. Type I error rates for preliminary tests for the assumption of normality in four groups 

 

 Further, we found the conditional-on-Levene approach to significance testing of these comparisons to 

be preferable for robustness purposes. Some scholars (e.g., Delacre et al., 2017; Hayes & Cai, 2007; 

Zimmerman, 2004) have recommended that the Welch’s t-test (and by generalization the robust Welch’s 
F-test) should be used without the preliminary test of homoscedasticity—indeed, our supplemental results 

confirm this. However, we found that there may be benefit to performing this preliminary assumption test 

before running the Scheffé-type maximum MCP procedures presented here. Indeed, it is still widespread 
practice to decide whether to use robust tests based on the significance of Levene's test and therefore this 

conclusion will not impact many. 

  



Brooks et al. 

26                                                                                                       General Linear Model Journal, 2024, Vol. 48(1) 

 
Figure 9. Type I error rates of conditional and unconditional omnibus tests of ANOVA means comparisons 

in four groups 

 
Figure 10. A subset of the most critical output from an example dataset used with the R Shiny app  

(https://72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/)  

https://72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/
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Conclusions 

  We believe that every researcher who performs ANOVA should run the SchefféMax comparison. Like 

running both ANOVA and independent t tests for two group mean comparisons, there is no Type I error 

inflation concern for obtaining both the ANOVA and the SchefféMax p-values—they are equivalent tests 

with equal p-values. There is valuable exploratory information in the SchefféMax comparison that should 
be reviewed in the same way researchers examine the coefficient weights in multiple linear regression and 

discriminant analysis or the loadings in factor analysis. We believe that researchers are missing valuable 

exploratory and descriptive information by not examining this maximum comparison. Indeed, because of 
the perfect congruence, the maximum Scheffé comparison should have higher power conditional on a 

statistically significant ANOVA than any other MCP. 

  However, the SchefféMax comparison is often not interpretable in a theoretically or practically 
meaningful way. Therefore, we recommend researchers always examine the maximum human-friendly 

comparison, BarcikowskiMax. We believe that our results provide compelling evidence that the 

BarcikowskiMax comparison maintains a sufficiently high level of congruence with the omnibus ANOVA 

that it can be used in the same way as the SchefféMax comparison—as equivalent to the ANOVA p-value. 
While there may be a slight amount of Type I error inflation, we believe the strong congruence will allow 

the simultaneous use of both ANOVA and BarcikowskiMax without worry. Therefore, we recommend that 

all researchers who perform ANOVA should use both SchefféMax and BarcikowskiMax to report the most 
informative comparison from their analysis. 

  Further, we believe that such exploratory use of all the statistically significant Barcikowski human-

friendly comparisons as a true non-pairwise Scheffé-like MCP will help researchers to identify potential 
differences between or similarities among groups to be investigated further. The Barcikowski human-

friendly comparisons will provide the most informative pairwise and non-pairwise comparisons for review 

by the researcher. Our results suggest that the method controls Type I error, and indeed is a little 

conservative—but that the trade-off for obtaining the most informative comparisons may be worth the 
conservative nature of the approach. 

  Further, for researchers who follow our recommendation to report the SchefféMax and 

BarcikowskiMax comparisons, as well as the meaningful statistically significant Barcikowski human-
friendly comparisons, it will be critical that they report the Brown-Forsythe adjustment to the Scheffé MCP 

when there is evidence that the homoscedasticity assumption has not been met. Efforts to provide a p-value 

for this test will be helpful, as currently it uses critical values. Results provided here suggest that the Brown-

Forsythe adjustment for unequal variances does indeed help maintain the desired Type I error rate for the 
Scheffé MCP. The conditional approach, testing for homoscedasticity and then choosing either the Scheffé 

or Brown-Forsythe significance test, as appropriate, was the most consistently robust approach to the 

methods we studied. We hope some of the commonly used statistical programs will begin to provide these 
results as part of their regular ANOVA output. 
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