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Although researchers assume that software packages should produce the same results (e.g., model 

parameter estimates) for the same model, it is not always the case for ordinal regression models. The MASS, 

ordinal, rms, and VGAM packages in R may use different forms to express the proportional odds model 

(PO) for ordinal response variables and parameterize it differently, so researchers can easily become 

confused when they interpret the results. However, there are no studies specifically to address this issue. 

The purpose of the study was to investigate how to implement the PO model in educational research with 
multiple packages in R and compare the differences among these packages. Furthermore, it compares the 

results from the R packages and those from other general purpose software programs, SAS, SPSS Statistics, 

and Stata with the aim to help researchers to understand the performance of each package. 

 rdinal logistic regression is a modeling technique for predicting ordinal response variables. The 
proportional odds (PO) model (Agresti, 2010, 2013, 2019; Ananth & Kleinbaum, 1997; Armstrong 

& Sloan, 1989; Hilbe, 2009; Liu, 2009, 2016, 2023; Long, 1997; Long & Freese, 2014; McCullagh, 

1980; McCullagh & Nelder, 1989; O’Connell, 2000, 2006; O’Connell & Liu, 2011; Powers & Xie, 2008) 
is one of the most popular models for ordinal regression analysis. This model estimates the cumulative odds 

of being at or below a particular level of the ordinal response variable, or the inversed odds of being above 

that level. Thus, it is also called the cumulative odds model. 
  Although researchers currently have a variety of statistical software options (e.g., SAS, SPSS Statistics, 

and Stata) when fitting ordinal logistic regression models, they have been increasingly interested in the free 

software package R. R is not only general-purpose statistical software but also a programming language 

environment. It is powerful, flexible, and freely available with rising popularity in various disciplines and 

research fields. Compared with other statistical packages usually developed and maintained by a single 

company, R tends to have more extensive analytic capabilities for a variety of models including ordinal 

regression thanks to the contributions from all around the globe. Several packages in R can be used to fit 

the PO model. For example, the polr() function in the MASS package (Venable & Ripley, 2002), the 

clm() function in the ordinal package (Christensen, 2015, 2024), the lrm() function in the rms 

package (Harrell, 2001, 2015), and the vglm() function in the VGAM package (Yee, 2010, 2024) are all 

capable of estimating the PO model. 
  Although we assume that software packages should produce the same results (e.g., model parameter 

estimates) for the same model, it is not always the case for ordinal regression models since software 

packages may use different forms to express the PO model and parameterize it differently. Liu (2009) 
compared the features for ordinal logistic regression among Stata, SAS, and SPSS Statistics and found that 

these three packages parameterized the PO model differently and thus produced inconsistent output. These 

differences in model parameterizations may also exist in the MASS, ordinal, rms, and VGAM 

packages in R. In addition, methods used in R packages are not all well documented. For example, 

not all four packages provide the parameterization for the PO model in the R documentation and 

manuals. When provided, it lacks thorough explanation and the different parameterizations used 

by other software packages are not noted, which may confuse researchers when interpreting the 

results from these packages. 
  To our knowledge, no study has been conducted to fit the PO model by using and synthesizing multiple 

packages in R, nor comparing differences among them. Therefore, it is critical to assist educational 

researchers in understanding the methods for fitting the ordinal logistic regression model with these R 
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packages, recognizing their differences, making a sound choice, and correctly interpreting the results. Our 
study aims to address this research gap. 

  The purpose of the study was to investigate how to implement the PO model for ordinal response 

variables in educational research by using multiple packages in R. In addition, this study compared the 

differences and identified similarities in model fitting using the MASS, ordinal, rms, and VGAM 

packages in R. Furthermore, it compared the results from the R packages and those from other general-

purpose software such as SAS, SPSS Statistics, and Stata. To illustrate the uses of these R packages, the 

empirical data from the High School Longitudinal Study of 2009 (HSLS:09) were employed to conduct the 

ordinal regression analysis. 
 

Theoretical Framework 

  The PO model can mainly be parameterized in two different ways. One is the latent variable model, 

and the other is a direct extension of the binary logistic regression model. 
 

A Latent Variable Model 

  The latent variable model (Agresti, 2013; Liu, 2009; Long & Freese, 2014) assumes that a latent 

variable, Y*, exists. Y* = xβ + ε, where x is a row vector of predictors, β is a column vector of coefficients, 
and ε is the error term. Let Y* be divided by some cut points: α1,  α2, …, αj, and α1 < α2  < … < αj. The 

observed variable Y = j if the latent variable Y* falls in the interval between αj-1 and αj, α j-1 < Y* ≤ αj. For 

example, Y = 1 if y* ≤ α1 and Y = 2 if α1 < Y* ≤ α2. Therefore, P(Y = 1) = P(Y* ≤ α1) = P(xβ + ε ≤ α1) = 

F(α1 − xβ), and then P(Y =  j) = P (α j-1 < Y* ≤ αj) = F (αj − xβ) − F (αj-1  − xβ). 

  The cumulative probabilities can be obtained using the following function:        

          P(Y ≤  j) = F(αj  − xβ),              (1) 
where F is the cumulative distribution function; and j = 1, 2, …, J−1. Since the PO model estimates the 

cumulative probabilities of being at or below a particular category, this model can be expressed on the logit 

scale as follows (Fullerton & Xu, 2016; Liu, 2009, 2016, 2023; Long, 1997; Long & Freese, 2014): 

logit [(Y≤j | x1, x2, …, xp)] = ln 
( )
( ) 


















p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
= j + (−1X1 −2X2 − … −pXp),      (2) 

where π(Y ≤ j|x1, x2,…, xp) is the cumulative probability of being at or below a category j, given a set of 

predictors; j = 1, 2, …, J−1. j are the cut points; and 1, 2,…, p are the logit coefficients. The signs before 
both logit coefficients on the right side of the equation are negative so that an increase in a predictor is 

associated with the odds of being above a particular category. 
 

The Proportional Odds Model: An Extension of Binary Logistic Regression 

  In addition to the latent variable model, the PO model can be expressed as an extension of the binary 

logistic regression model as follows (Agresti, 2010; Liu, 2016, 2022; O’Connell, 2006; Yee, 2010): 
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where πj(x) = π(Y ≤  j | x1, x2, …, xp), the cumulative probability of being at or below a category j; 

ln [
π𝑗(x)

1−π𝑗(x)
] is the ln(odds), where the cumulative odds are the ratio of the cumulative probability of being 

at or below a particular category to the cumulative probability of above that category.  

  When estimating the cumulative probability and odds of being above a category, the modified form of 
the PO model can be expressed as follows (Agresti, 2010).  

  logit [(Y > j | x1, x2, …, xp)] = ln 
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where j = 1, 2, …, J−1. Please note that the cumulative odds of being above a particular category are the 

inversed odds of being at or below that category. 

  A modified form of Equation (4) estimates the cumulative probability of being at or above a category 
and is expressed as follows (Yee, 2010). 
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where j = 2, … , J. 
  These two equations (i.e., Equations 4 and 5) are equivalent since Equation 4 estimates the cumulative 

probabilities of being above J−1 categories starting from category 1, whereas Equation 5 estimates the 
cumulative probabilities starting from category 2. 
 

Why Compare Multiple Packages in R? 

  Although different parameterizations do not affect model estimation, they do influence the signs for the 
cut points or intercepts and the logit coefficients, thereby impacting the interpretations of the output of 

different software packages. The R documentation and manuals for various packages for the PO model do 

not address or explain different parameterizations by other software packages. Therefore, it is important for 
researchers to understand different parameterizations in various R packages for ordinal regression. 
 

Methodology 

Sample 

  The High School Longitudinal Study of 2009 (HSLS:09), conducted by the NCES (Ingels, et. al., 2011), 

kept track of high school students from ninth grade to postsecondary education and their choice of future 

careers. It surveyed students, their parents, and school personnel, and assessed 9th graders’ mathematics 

achievement. In the 2009 base-year data, 21,444 high school students, from a national sample of 944 
schools, participated in the study. Students were asked to provide basic demographic information, school 

and home experience, mathematics and science attitude, mathematics and science self-efficacy, and future 

educational and life plans. The ordinal outcome variable of interest is students’ mathematics proficiency, 
and the predictors are students’ math identity (MTHID), students’ math self-efficacy (MTHEFF), and math 

teachers’ self-efficacy (X1TMEFF). 

  The outcome variable, students’ mathematics proficiency levels in high schools, was ordinal with five 

levels, from level 1, students can answer questions in algebraic expressions, to level 5, students can 
understand linear functions. Students who failed to pass through level 1 were assigned to level 0. Table 1 

provides the frequency of six mathematics proficiency levels (i.e., levels 0-5). 
 

Data Analysis 

  First, the polr() function in the R MASS package was used to fit the PO model. Then, the same model 

was fitted using the clm() function in the ordinal package, the lrm() function in the rms package, 

and the vglm() function in the VGAM package, respectively. The similarities and differences of the results 

from these four packages were compared. Finally, the results from the R packages were compared with 

those from SAS, SPSS Statistics, and Stata. 
Results 

The PO Model with the polr() Function in the MASS Package 

  The polr() function in the MASS package (Venable & Ripley, 2002) was used to fit the PO model. 

This function can be used to fit ordinal logistic regression and ordinal probit models. It uses Equation 2 to 

express the PO model with the negative signs for the logit coefficients in the linear predictor.  

        logit [(Y≤j)] = j + (−1X1 −2X2 − … −pXp). 
 

Table 1: Proficiency Levels and Frequencies (Percentages) for the Study Sample,  

HSLS: 09 Base-Year Data (n = 21,444)  

Proficiency 
Levels 

 
Description 

 
Frequency 

0 Did not pass level 1 2263 (10.6%) 

1 Algebraic expressions 4933 (23%) 

2 Multiplicative and proportional thinking 5495 (25.6%) 
3 Algebraic equivalents 5761 (26.9%) 

4 Systems of equations 2396 (11.2%) 

5 Linear functions 596 (2.8%) 
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> library(MASS) 

> polr.po<-polr(as.factor(Mathprof)~ MTHID + MTHEFF + X1TMEFF, data = hsls) 

> summary(polr.po) 

 

Re-fitting to get Hessian 

 

Call: 

polr(formula = as.factor(Mathprof) ~ MTHID + MTHEFF + X1TMEFF, data = hsls) 

 

Coefficients: 

         Value Std. Error t value 

MTHID   0.6264    0.02044  30.647 

MTHEFF  0.2431    0.02009  12.098 

X1TMEFF 0.1330    0.01706   7.795 

 

Intercepts: 

    Value    Std. Error t value  

0|1  -2.5795   0.0335   -76.9260 

1|2  -0.8870   0.0206   -43.1017 

2|3   0.3435   0.0192    17.9164 

3|4   1.9532   0.0266    73.5244 

4|5   3.7734   0.0528    71.4298 
 

Residual Deviance: 38025.22  

AIC: 38041.22  

(8970 observations deleted due to missingness) 
 

> ctable <- coef(summary(polr.po)) 
 

Re-fitting to get Hessian 
 

> p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2 

> ctable <- cbind(ctable, "p value" = p) 

> ctable 

             Value Std. Error    t value       p value 

MTHID    0.6264123 0.02043988  30.646581 2.934950e-206 

MTHEFF   0.2430702 0.02009105  12.098430  1.076504e-33 

X1TMEFF  0.1329641 0.01705704   7.795263  6.427430e-15 

0|1     -2.5795005 0.03353225 -76.925959  0.000000e+00 

1|2     -0.8869798 0.02057878 -43.101678  0.000000e+00 

2|3      0.3435181 0.01917336  17.916428  8.778764e-72 

3|4      1.9531969 0.02656528  73.524413  0.000000e+00 

4|5      3.7734393 0.05282723  71.429821  0.000000e+00 

 

> cbind(exp(coef(polr.po)), exp(confint(polr.po))) 

Waiting for profiling to be done... 
 

Re-fitting to get Hessian 
 

                    2.5 %   97.5 % 

MTHID   1.870886 1.797514 1.947466 

MTHEFF  1.275158 1.225947 1.326404 

X1TMEFF 1.142209 1.104669 1.181056 
 

Figure 1. The PO Model with the polr Function in the MASS Package 
 

 In the model formula for this function, the ordinal response variable needs to be specified as a factor or 
categorical variable with the as.factor() function. Figure 1 displays the R syntax and the output. 

 Since the output from the summary() function did not provide the p-values for the tests of the logit 

coefficients, we used the pnorm() function to compute them. We also ran the exp() function to compute  

the odds ratios by exponentiating the logit coefficients. 
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 In the results of the estimated PO model, the logit coefficients of all three predictors were significant 
in predicting the mathematics proficiency levels. They were positively associated with the odds of being 

above a proficiency level. In terms of the odds ratios (OR), the odds of being above a proficiency level 

increased by 1.871 with a one-unit increase in students’ mathematics identity, increased by 1.275 with a 

one-unit increase in students’ mathematics self-efficacy, and increased by 1.142 with a one-unit increase in 
teachers’ mathematics self-efficacy. Alternatively, the results can also be interpreted in terms of the odds 

of being at or below a proficiency level when the inversed odds are obtained with the vglm() function in 

the VGAM package (see Table 2 and Figure 4).  
 

The PO Model with the clm() Function in the ordinal Package 

  The clm() function in the ordinal package (Christensen, 2015, 2024) was also used to fit the PO 

model. This function can be used to fit a variety of ordinal regression models, also called cumulative link 

models as the function name implies. Multiple link functions, such as logit, probit, cloglog, and loglog and 

different type of thresholds or cut points, can be specified for various models. Same as the polr() 

function, the clm() function also uses Equation 2 to express the PO model where there are negative signs 

before the logit coefficients. 

  In the model formula, as with the polr() function, the ordinal response variable needs to be specified 

as a categorical variable with the as.factor() function. Figure 2 displays the R syntax and the output. 

To compute the odds ratios, we again used the exp() function to exponentiate the coefficients. The results 

were the same as those estimated by the polr() function in the preceding section.  
 

The PO Model with the lrm() Function in the rms Package 

  The same PO model was fitted using the lrm() function in the rms package (Harrell, 2015). The 

lrm() function can be used to fit both logistic regression models and proportional odds models but does 

not allow other link functions. It uses Equation 5 to express the PO model where the signs for logit 

coefficients are positive: logit[(Y ≥ j)] = j + 1X1 + 2X2 + … +pXp. The R syntax and the output are 

displayed in Figure 3. 

  In the output, the intercepts or thresholds have the same magnitude as those estimated by the polr() 

and clm() functions but have negative signs because the PO model for the lrm() function estimates the 

cumulative odds of at or above a category of an ordinal response variable (see Equation 5). For example, 

the log odds of being at or above category 1, logit[P(Y>=1)], compares the probabilities of categories 1, 2, 

3, 4, and 5 to the probability of being at category 0. 
 

The PO Model with the vglm() Function in the VGAM Package 

  The vglm() function in the VGAM package (Yee, 2010, 2024) was also used to fit the PO model. This 

function can fit various generalized linear models for binary, ordinal, nominal, and count response 

variables. It uses Equations 3 and 5 to express the PO model where the signs for the logit coefficients are 
positive. 

  In the model formula, the ordinal response variable does not need to be specified as a categorical 

variable since it will be converted to a factor variable internally. To fit a PO model or a cumulative odds 
model, the argument cumulative(parallel = TRUE) needs  to be used, where the parallel odds 

or proportional odds are specified. To estimate the cumulative odds of being at or below a particular 

category of an ordinal response variable, we also need to specify that the ordinal categories are not reversed 
with the argument, reverse = FALSE. The R syntax and the output are displayed in Figure 4. 

  In the output, although the intercepts are the same as those estimated by the polr() and clm() 

functions, the estimated logit coefficients have the same magnitude with negative signs since the vglm() 

function uses a different equation (i.e., Equation 3) to express the PO model. The estimated logit coefficients 

for the three predictor variables were −.626, −.243, and −.133, respectively. 

 The exp() function was used to exponentiate the coefficients to obtain the odds ratios of being at or 

below a category. The odds of being at or below a proficiency level decreased by 0.535 with a one-unit 

increase in students’ mathematics identity, decreased by 0.784 with a one-unit increase in students’ 

mathematics self-efficacy, and decreased by 0.875 with a one-unit increase in teachers’ mathematics self-

efficacy.  
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> library(ordinal) 

> clm.po<-clm(as.factor(Mathprof) ~ MTHID + MTHEFF + X1TMEFF, data = hsls, 

na.action="na.omit") 

> summary(clm.po) 

formula: as.factor(Mathprof) ~ MTHID + MTHEFF + X1TMEFF 

data:    hsls 
 

 link  threshold nobs  logLik    AIC      niter max.grad cond.H  

 logit flexible  12474 -19012.61 38041.22 6(0)  8.21e-13 2.0e+01 
 

Coefficients: 

        Estimate Std. Error z value Pr(>|z|)     

MTHID    0.62641    0.02044  30.647  < 2e-16 *** 

MTHEFF   0.24307    0.02009  12.099  < 2e-16 *** 

X1TMEFF  0.13296    0.01706   7.795 6.43e-15 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Threshold coefficients: 

    Estimate Std. Error z value 

0|1 -2.57935    0.03353  -76.92 

1|2 -0.88695    0.02058  -43.10 

2|3  0.34356    0.01917   17.92 

3|4  1.95321    0.02657   73.53 

4|5  3.77342    0.05283   71.43 
 

> cbind(exp(coef(clm.po)), exp(confint(clm.po, type="Wald"))) 

                          2.5 %      97.5 % 

0|1      0.07582343  0.07100062  0.08097383 

1|2      0.41191166  0.39562848  0.42886503 

2|3      1.40995557  1.35795409  1.46394840 

3|4      7.05128348  6.69354026  7.42814667 

4|5     43.52855055 39.24714538 48.27700702 

MTHID    1.87088821  1.79741970  1.94735971 

MTHEFF   1.27515852  1.22592176  1.32637277 

X1TMEFF  1.14220743  1.10465355  1.18103799 
 

Figure 2. The PO Model with the clm() Function in the ordinal Package 
 

 We used the reverse = TRUE argument to estimate the logit coefficients of being at or above a 

particular level of the mathematics proficiency. The R syntax and output are displayed in Figure 4. 

Compared to the results from the vglm() function with the reverse = FALSE option, the results from 

the same function with the reverse = TRUE argument had the same intercepts and logit coefficients in 

magnitude but with opposite signs. The estimated logit coefficients for the three predictor variables were 
0.626, 0.243, and 0.133, respectively. We obtained the odds ratios of being at or above a level of the 

mathematical proficiency by exponentiating the logit coefficients. The results are provided in Table 2. For 

example, the odds ratio for MTHID was 1.871, indicating that the odds of being at or above a proficiency 
level increased by 1.871 with a one-unit increase in students’ mathematics identity. 
 

A Comparison of the Results Using Different R Packages 

  Table 2 provides the results of the PO Models with the MASS, ordinal, rms, and VGAM packages in 

R. Comparing the results using the MASS and ordinal packages in R, we found that they produced the 

same logit coefficients and intercepts or thresholds. Compared to the output from both the polr() and 

clm() functions, the estimated logit coefficients from the lrm() function in the rms package were the 

same. However, the intercepts were the same in magnitude with reversed signs. In addition, the vglm() 

function in the VGAM package with the reverse = FALSE and reverse = TRUE options produced 

the same intercepts and coefficients in magnitude with reversed signs. Further, the lrm() function and the 

vglm() function with the reverse = TRUE option produced the same results. Finally, compared to the 

results from both the polr() and clm() functions, the VGAM package with the reverse = FALSE 

option produced the same intercepts, but the coefficients had reversed signs.  
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> library(rms) 

> lrm.po<-lrm(as.factor(Mathprof) ~ MTHID + MTHEFF + X1TMEFF, data = hsls) 

> lrm.po 

Frequencies of Missing Values Due to Each Variable 

as.factor(Mathprof)            MTHID         MTHEFF          X1TMEFF  

                  0             285            2685            7371  

 

Logistic Regression Model 

  

 lrm(formula = as.factor(Mathprof) ~ MTHID + MTHEFF + X1TMEFF,  

     data = hsls) 

   

 Frequencies of Responses 

    0    1    2    3    4    5  

 1059 2760 3249 3493 1524  389  

   

                       Model Likelihood     Discrimination    Rank Discrim.     

                          Ratio Test           Indexes           Indexes        

 Obs         12474    LR chi2    2264.84    R2       0.173    C       0.672     

 max |deriv| 7e-13    d.f.             3    g        0.919    Dxy     0.344     

                      Pr(> chi2) <0.0001    gr       2.507    gamma   0.344     

                                            gp       0.203    tau-a   0.269     

                                            Brier    0.215                      

  

         Coef    S.E.   Wald Z Pr(>|Z|) 

 y>=1     2.5793 0.0335  76.93 <0.0001  

 y>=2     0.8869 0.0206  43.10 <0.0001  

 y>=3    -0.3436 0.0192 -17.92 <0.0001  

 y>=4    -1.9532 0.0266 -73.53 <0.0001  

 y>=5    -3.7734 0.0528 -71.43 <0.0001  

 MTHID    0.6264 0.0204  30.65 <0.0001  

 MTHEFF   0.2431 0.0201  12.10 <0.0001  

 X1TMEFF  0.1330 0.0171   7.80 <0.0001 

 

> exp(coefficients(lrm.po)) 

   y>=1         y>=2        y>=3         y>=4       y>=5       MTHID     

13.18853589  2.42770499  0.70924221  0.14181815  0.02297343  1.87088821  

     MTHEFF     X1TMEFF  

 1.27515852  1.14220743 
 

Figure 3. The PO Model with the lrm() Function in the rms Package 
 

A Comparison of the Results of the PO Models Using SAS, SPSS Statistics, and Stata  

  Table 3 provides the results of the PO Models using SAS (ascending and descending), SPSS Statistics, 
and Stata. The results by SPSS Statistics and Stata were the same as those by the polr() and clm() 

functions in R. In addition, SAS proc logistic with the ascending option produced the same results 

as those by the VGAM package with the reverse = FALSE option. Correspondingly, SAS proc 

logistic with the descending option, the lrm() function and the vglm() function with the reverse 

= TRUE option produced the same results.  

 

A Comparison of the Results of the PO Models Using SAS, SPSS Statistics, and Stata  

  Table 3 provides the results of the PO Models using SAS (ascending and descending), SPSS Statistics, 
and Stata. The results by SPSS Statistics and Stata were the same as those by the polr() and clm() 

functions in R. In addition, SAS proc logistic with the ascending option produced the same results 

as those by the VGAM package with the reverse = FALSE option. Correspondingly, SAS proc 

logistic with the descending option, the lrm() function and the vglm() function with the reverse 

= TRUE option produced the same results. 
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> library(VGAM) 

> vglm.po<-vglm(Mathprof ~ MTHID + MTHEFF + X1TMEFF, cumulative(parallel = 

TRUE, reverse = FALSE), data = hsls) 

> summary(vglm.po) 
 

Call: 

vglm(formula = Mathprof ~ MTHID + MTHEFF + X1TMEFF, family = 

cumulative(parallel = TRUE,  

    reverse = FALSE), data = hsls) 
 

Pearson residuals: 

                   Min       1Q  Median      3Q    Max 

logit(P[Y<=1])  -0.967 -0.30658 -0.1721 -0.1159 8.3973 

logit(P[Y<=2])  -2.179 -0.79749 -0.2591  0.5256 4.1206 

logit(P[Y<=3])  -3.518 -0.84827  0.2343  0.8166 2.5004 

logit(P[Y<=4])  -6.904  0.12411  0.2096  0.5984 1.1675 

logit(P[Y<=5]) -12.815  0.07708  0.1073  0.1522 0.9156 
 

Coefficients:  

              Estimate Std. Error z value Pr(>|z|)     

(Intercept):1 -2.57935    0.03356 -76.866  < 2e-16 *** 

(Intercept):2 -0.88695    0.02061 -43.027  < 2e-16 *** 

(Intercept):3  0.34356    0.01921  17.881  < 2e-16 *** 

(Intercept):4  1.95321    0.02651  73.665  < 2e-16 *** 

(Intercept):5  3.77342    0.05265  71.674  < 2e-16 *** 

MTHID         -0.62641    0.02025 -30.932  < 2e-16 *** 

MTHEFF        -0.24307    0.01992 -12.201  < 2e-16 *** 

X1TMEFF       -0.13296    0.01694  -7.851 4.13e-15 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Number of linear predictors:  5  

 

Names of linear predictors:  

logit(P[Y<=1]), logit(P[Y<=2]), logit(P[Y<=3]), logit(P[Y<=4]), logit(P[Y<=5]) 
 

Residual deviance: 38025.22 on 62362 degrees of freedom 
 

Log-likelihood: -19012.61 on 62362 degrees of freedom 

Number of iterations: 5  
> cbind(exp(coef(vglm.po)), exp(confint(vglm.po))) 

                               2.5 %      97.5 % 

(Intercept):1  0.07582343  0.0709970  0.08097795 

(Intercept):2  0.41191171  0.3956014  0.42889444 

(Intercept):3  1.40995585  1.3578460  1.46406555 

(Intercept):4  7.05128466  6.6942020  7.42741482 

(Intercept):5 43.52854836 39.2609979 48.25996845 

MTHID          0.53450553  0.5137053  0.55614795 

MTHEFF         0.78421620  0.7541847  0.81544356 

X1TMEFF        0.87549776  0.8469136  0.90504663 
 

> vglm.po2<-vglm(Mathprof ~ MTHID + MTHEFF + X1TMEFF, cumulative(parallel = TRUE, 

reverse = TRUE), data = hsls) 

> summary(vglm.po2) 

Call: 

vglm(formula = Mathprof ~ MTHID + MTHEFF + X1TMEFF, family = cumulative(parallel = 

TRUE,  

reverse = TRUE), data = hsls) 

 

Pearson residuals: 

                   Min      1Q  Median       3Q    Max 

logit(P[Y>=2]) -8.3973  0.1159  0.1721  0.30658  0.967 

logit(P[Y>=3]) -4.1206 -0.5256  0.2591  0.79749  2.179 

logit(P[Y>=4]) -2.5004 -0.8166 -0.2343  0.84827  3.518 

logit(P[Y>=5]) -1.1675 -0.5984 -0.2096 -0.12411  6.904 

logit(P[Y>=6]) -0.9156 -0.1522 -0.1073 -0.07708 12.815  
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Coefficients:  

              Estimate Std. Error z value Pr(>|z|)     

(Intercept):1  2.57935    0.03356  76.866  < 2e-16 *** 

(Intercept):2  0.88695    0.02061  43.027  < 2e-16 *** 

(Intercept):3 -0.34356    0.01921 -17.881  < 2e-16 *** 

(Intercept):4 -1.95321    0.02651 -73.665  < 2e-16 *** 

(Intercept):5 -3.77342    0.05265 -71.674  < 2e-16 *** 

MTHID          0.62641    0.02025  30.932  < 2e-16 *** 

MTHEFF         0.24307    0.01992  12.201  < 2e-16 *** 

X1TMEFF        0.13296    0.01694   7.851 4.13e-15 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Number of linear predictors:  5  

 

Names of linear predictors:  

logit(P[Y>=2]), logit(P[Y>=3]), logit(P[Y>=4]), logit(P[Y>=5]), logit(P[Y>=6]) 

 

Residual deviance: 38025.22 on 62362 degrees of freedom 

 

Log-likelihood: -19012.61 on 62362 degrees of freedom 

 

Number of iterations: 5 
 

Figure 4. The PO Model with the vglm() Function in the VGAM Package 
 
 

Table 2. Comparison of Results from the PO Models with the MASS, ordinal, rms, and VGAM R packages.  

Model 

Estimates 

polr in  
MASS  

clm in 
ordinal 

lrm in 
rms 

vglm in VGAM 
(reverse=FALSE) 

vglm in VGAM 
(reverse=TRUE) 

Variables P(Y ≤ j) P(Y ≤ j) P(Y ≥ j) P(Y ≤ j) P(Y ≥ j) 

1 -2.580 -2.580  2.579 -2.580  2.579 

2 -0.887 -0.887  0.887 -0.887  0.887 

3  0.344  0.344 -0.344  0.344 -0.344 

4  1.953  1.953 -1.953  1.953 -1.953 

5  3.773  3.773 -3.773  3.773 -3.773 

Variables b (SE(b)) OR b (SE(b)) OR b (SE(b)) OR b (SE(b)) OR b (SE(b)) OR 

MTHID 
   0.626** 

(0.020) 
1.871 

   0.626** 
(0.020) 

1.871 
   0.626** 

(0.020) 
1.871 

  -0.626** 
(0.020) 

0.535 
    0.626** 

(0.020) 
1.871 

MTHEFF 
   0.243** 

(0.020) 
1.275 

   0.243** 

(0.020) 
1.275 

   0.243** 

(0.020) 
1.275 

  -0.243** 

(0.020) 
0.784 

    0.243** 

(0.020) 
1.275 

X1TMEFF 
   0.133** 

(0.017) 
1.142 

   0.133** 

(0.017) 
1.142 

   0.133** 

(0.017) 
1.142 

  -0.0133** 

(0.017) 
0.875 

    0.133** 

(0.017) 
1.142 

Model Fit AIC  AIC  2
3  AIC  AIC  

 38,041.22  38,041.22  2,264.84**  38,041.22  38,041.22  

Significant at ** p <0.01. 

 

Feature Comparisons of Fitting the PO Model Using Multiple R Packages 

  In addition to the different parameterizations in expressing PO models among the R packages above, 

we also identified other differences when fitting the PO model with those four R packages. The comparison 

of the features between those packages is provided in Table 4. We compared the model specification, 

parameter estimates, model fit statistics, test of the PO assumption, predicted probabilities, and extension 

to multilevel models. The differences in the model specification were discussed in the preceding section. 
Both the polr() and clm() functions parameterize the PO model with negative signs before the logit 

coefficients, whereas the signs before logit coefficients in the model equation used by the lrm() and 

vglm() functions are positive.  
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Table 3. Comparison of Results from the PO Models SAS, SPSS Statistics, and Stata  
Model 

Estimates SAS (Ascending) SAS (Descending) SPSS Statistics Stata 

Variables P(Y ≤ j) P(Y ≤ j) P(Y ≥ j) P(Y ≤ j) 

1 -2.579  2.579 -2.580 -2.580 

2 -0.887  0.887 -0.887 -0.887 

3  0.344 -0.344  0.344  0.344 

4  1.953 -1.953  1.953  1.953 

5  3.773 -3.773  3.773  3.773 

Variables b (SE(b)) OR b (SE(b)) OR b (SE(b)) OR b (SE(b)) OR 

MTHID 
   -0.626** 

(0.020) 
0.535 

    0.626** 
(0.020) 

10.871 
    0.626** 

(0.020) 
10.871 

    0.626** 
(0.020) 

10.871 

MTHEFF 
   -0.243** 

(0.020) 
0.784 

    0.243** 

(0.020) 
10.275 

    0.243** 

(0.020) 
10.275 

    0.243** 

(0.020) 
10.275 

X1TMEFF 
   -0.133** 

(0.017) 
0.875 

    0.133** 
(0.017) 

10.142 
    0.133** 

(0.017) 
10.142 

    0.133** 
(0.017) 

10.142 

Model Fit 2
3  2

3  2
3  2

3  

 2,264.84**  2,264.84**  2,264.84**  2,264.84**  

Significant at ** p <0.01. 
 

 As summarized in Table 4, unlike the other three functions, the polr() function does not provide the 

significance test for logit coefficients for predictor variables in the parameter estimates. To computer the p 

values, we need to use additional R functions. In addition, all four functions provide either the t-statistics 

or z-statistics for parameter estimates. While the polr() function provides the t-values, the other three 

functions provide the z-values. After fitting the PO models with the polr(), clm(), and vglm() 

functions, the profile likelihood confidence intervals for the parameter estimates can be easily computed 

with the confint() function, but the lrm() function does not work with confint() function. 

  Those four functions provide limited fit statistics for the PO model. The clm() and vglm() functions 

provide the log-likelihood, whereas the polr() function provides the residual deviance, and the lrm() 

function provided the model likelihood ratio test, the discrimination indices, and the rank discrimination 
indices. 

 Although we can use the anova() function to conduct the likelihood ratio test after fitting the PO  

model with the polr(), clm() and lrm() functions, we cannot use it with the vglm() function. We 

need to use the lrtest() function instead. 

 To test the PO assumption, we need to run either the clm() function or the vglm() function to fit 

the PO model and then use the nominal_test() function in the ordinal package and the lrtest() 

function in the VGAM package to perform the test, respectively.  

  All four functions work with the ggpredict() function in the ggeffects package (Lüdecke, 

2018), so we can use it to compute the predicted probabilities of being in an ordinal response category at 

any values of the predictor variables. 
  Of the four packages, only the ordinal package can fit multilevel models for ordinal response 

variables, while the other three packages lack this capability. We can use the clmm() function in the 

ordinal package, an extension of the clm()function, to fit multilevel models.   

 

Conclusions 

  This study synthesized the polr(), clm(), lrm(), and vglm() functions in those R packages and 

compared the differences and similarities for model fitting. It illustrated the use of the MASS, ordinal, 

rms, and VGAM packages in R to fit the PO model. The R code and output were provided, and the results 

were interpreted and compared. In addition, this study compared the results from the R packages and those 

from SAS, SPSS Statistics, and Stata. Further, it compared the features such as model specification, 
parameter estimates, model fit statistics, and test of the PO assumption among those four functions.   
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Table 4. Feature Comparisons of Fitting the PO Model Using Multiple R Packages 

Functions polr clm lrm vglm 

Packages MASS ordinal rms VGAM 

Model Specification     

   Cutpoints/Thresholds  ✓   

   Intercepts ✓  ✓ ✓ 

   Negative Signs Before Coefficients  ✓ ✓   

Parameter Estimates     

   Odds Ratio ✓ ✓ ✓ ✓ 

   T-statistic for Parameter Estimates ✓    

   Z-statistic for Parameter Estimates  ✓ ✓ ✓ 

   Significance Tests  ✓ ✓ ✓ 

   Confidence Interval for Parameter Estimate ✓ ✓  ✓ 

Fit Statistics     

   Log-likelihood  ✓  ✓ 

   Goodness-of-Fit Test with anova() ✓ ✓ ✓  

Test of the PO Assumption     

   Omnibus Test of Assumption of Proportional Odds    ✓ 

   Test of Assumption of Proportional Odds for Individual Variables  ✓   

   Predicted Probabilities with ggeffects ✓ ✓ ✓ ✓ 

Extension to Multilevel Models   ✓   
 

 This study found that the polr(), clm(), lrm(), and vglm() functions in the four R packages 

parameterized the PO model differently by following different model equations. Thus, the signs of the 

intercepts or cut points and the logit coefficients were different in the resulting output. Ignoring the 
differences in parameterization will likely lead to erroneous interpretation of the results. Although not all 

researchers use multiple packages or programs, understanding the differences among different packages in 

R would help applied researchers and practitioners to clarify the confusion of different parameterizations 

of PO models and interpret the results correctly. 

  This study also compared the results of the PO model from those four R packages and those from SAS, 

SPSS Statistics, and Stata. We found that the results by SPSS Statistics and Stata were the same as those 
by the polr() and clm() functions. In addition, SAS proc logistic with the ascending option 

produced the same results as those by the VGAM package with the non-reversed ordinal categories. Finally, 

SAS proc logistic with the descending option, the lrm() function and the vglm() function with 

the reversed ordinal categories produced the same results. It is expected that this study will help general 

SAS, SPSS Statistics, and Stata users choose appropriate R packages for ordinal regression analysis. 

  In the end, we would like to note that this study only focused on the PO model with multiple R packages. 

For non-proportional odds models when the PO assumption is violated, only clm() and vglm() functions 

can be used, whereas the other two functions do not have this capacity. For future research, fitting non-

proportional odds models or partial proportional odds models with those two functions will be conducted. 

In addition, when comparing the features for fitting the PO model with those four R packages, we focused 

on the current versions at the time of writing. With the development of those packages, new features may 

be added, so further research may be needed. 
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